1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra mlift.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package MLIFT MultivariateLifting}
<<package MLIFT MultivariateLifting>>=
)abbrev package MLIFT MultivariateLifting
++ Author : P.Gianni.
++ Description:
++ This package provides the functions for the multivariate "lifting", using
++ an algorithm of Paul Wang.
++ This package will work for every euclidean domain R which has property
++ F, i.e. there exists a factor operation in \spad{R[x]}.
MultivariateLifting(E,OV,R,P) : C == T
where
OV : OrderedSet
E : OrderedAbelianMonoidSup
R : EuclideanDomain -- with property "F"
Z ==> Integer
BP ==> SparseUnivariatePolynomial R
P : PolynomialCategory(R,E,OV)
SUP ==> SparseUnivariatePolynomial P
NNI ==> NonNegativeInteger
Term ==> Record(expt:NNI,pcoef:P)
VTerm ==> List Term
Table ==> Vector List BP
L ==> List
C == with
corrPoly: (SUP,L OV,L R,L NNI,L SUP,Table,R) -> Union(L SUP,"failed")
++ corrPoly(u,lv,lr,ln,lu,t,r) \undocumented
lifting: (SUP,L OV,L BP,L R,L P,L NNI,R) -> Union(L SUP,"failed")
++ lifting(u,lv,lu,lr,lp,ln,r) \undocumented
lifting1: (SUP,L OV,L SUP,L R,L P,L VTerm,L NNI,Table,R) ->
Union(L SUP,"failed")
++ lifting1(u,lv,lu,lr,lp,lt,ln,t,r) \undocumented
T == add
GenExEuclid(R,BP)
NPCoef(BP,E,OV,R,P)
IntegerCombinatoricFunctions(Z)
SUPF2 ==> SparseUnivariatePolynomialFunctions2
DetCoef ==> Record(deter:L SUP,dterm:L VTerm,nfacts:L BP,
nlead:L P)
--- local functions ---
normalDerivM : (P,Z,OV) -> P
normalDeriv : (SUP,Z) -> SUP
subslead : (SUP,P) -> SUP
subscoef : (SUP,L Term) -> SUP
maxDegree : (SUP,OV) -> NonNegativeInteger
corrPoly(m:SUP,lvar:L OV,fval:L R,ld:L NNI,flist:L SUP,
table:Table,pmod:R):Union(L SUP,"failed") ==
-- The correction coefficients are evaluated recursively.
-- Extended Euclidean algorithm for the multivariate case.
-- the polynomial is univariate --
#lvar=0 =>
lp:=solveid(map(ground,m)$SUPF2(P,R),pmod,table)
if lp case "failed" then return "failed"
lcoef:= [map(coerce,mp)$SUPF2(R,P) for mp in lp::L BP]
diff,ddiff,pol,polc:SUP
listpolv,listcong:L SUP
deg1:NNI:= ld.first
np:NNI:= #flist
a:P:= fval.first ::P
y:OV:=lvar.first
lvar:=lvar.rest
listpolv:L SUP := [map(eval(#1,y,a),f1) for f1 in flist]
um:=map(eval(#1,y,a),m)
flcoef:=corrPoly(um,lvar,fval.rest,ld.rest,listpolv,table,pmod)
if flcoef case "failed" then return "failed"
else lcoef:=flcoef :: L SUP
listcong:=[*/[flist.i for i in 1..np | i~=l] for l in 1..np]
polc:SUP:= (monomial(1,y,1) - a)::SUP
pol := 1$SUP
diff:=m- +/[lcoef.i*listcong.i for i in 1..np]
for l in 1..deg1 repeat
if diff=0 then return lcoef
pol := pol*polc
(ddiff:= map(eval(normalDerivM(#1,l,y),y,a),diff)) = 0 => "next l"
fbeta := corrPoly(ddiff,lvar,fval.rest,ld.rest,listpolv,table,pmod)
if fbeta case "failed" then return "failed"
else beta:=fbeta :: L SUP
lcoef := [lcoef.i+beta.i*pol for i in 1..np]
diff:=diff- +/[listcong.i*beta.i for i in 1..np]*pol
lcoef
lifting1(m:SUP,lvar:L OV,plist:L SUP,vlist:L R,tlist:L P,_
coeflist:L VTerm,listdeg:L NNI,table:Table,pmod:R) :Union(L SUP,"failed") ==
-- The factors of m (multivariate) are determined ,
-- We suppose to know the true univariate factors
-- some coefficients are determined
conglist:L SUP:=empty()
nvar : NNI:= #lvar
pol,polc:P
mc,mj:SUP
testp:Boolean:= (not empty?(tlist))
lalpha : L SUP := empty()
tlv:L P:=empty()
subsvar:L OV:=empty()
subsval:L R:=empty()
li:L OV := lvar
ldeg:L NNI:=empty()
clv:L VTerm:=empty()
--j =#variables, i=#factors
for j in 1..nvar repeat
x := li.first
li := rest li
conglist:= plist
v := vlist.first
vlist := rest vlist
degj := listdeg.j
ldeg := cons(degj,ldeg)
subsvar:=cons(x,subsvar)
subsval:=cons(v,subsval)
--substitute the determined coefficients
if testp then
if j<nvar then
tlv:=[eval(p,li,vlist) for p in tlist]
clv:=[[[term.expt,eval(term.pcoef,li,vlist)]$Term
for term in clist] for clist in coeflist]
else (tlv,clv):=(tlist,coeflist)
plist :=[subslead(p,lcp) for p in plist for lcp in tlv]
if not(empty? coeflist) then
plist:=[subscoef(tpol,clist)
for tpol in plist for clist in clv]
mj := map(eval(#1,li,vlist),m) --m(x1,..,xj,aj+1,..,an
polc := x::P - v::P --(xj-aj)
pol:= 1$P
--Construction of Rik, k in 1..right degree for xj+1
for k in 1..degj repeat --I can exit before
pol := pol*polc
mc := */[term for term in plist]-mj
if mc=0 then leave "next var"
--Modulus Dk
mc:=map(normalDerivM(#1,k,x),mc)
(mc := map(eval(#1,[x],[v]),mc))=0 => "next k"
flalpha:=corrPoly(mc,subsvar.rest,subsval.rest,
ldeg.rest,conglist,table,pmod)
if flalpha case "failed" then return "failed"
else lalpha:=flalpha :: L SUP
plist:=[term-alpha*pol for term in plist for alpha in lalpha]
-- PGCD may call with a smaller valure of degj
idegj:Integer:=maxDegree(m,x)
for term in plist repeat idegj:=idegj -maxDegree(term,x)
idegj < 0 => return "failed"
plist
--There are not extraneous factors
maxDegree(um:SUP,x:OV):NonNegativeInteger ==
ans:NonNegativeInteger:=0
while um ~= 0 repeat
ans:=max(ans,degree(leadingCoefficient um,x))
um:=reductum um
ans
lifting(um:SUP,lvar:L OV,plist:L BP,vlist:L R,
tlist:L P,listdeg:L NNI,pmod:R):Union(L SUP,"failed") ==
-- The factors of m (multivariate) are determined, when the
-- univariate true factors are known and some coefficient determined
nplist:List SUP:=[map(coerce,pp)$SUPF2(R,P) for pp in plist]
empty? tlist =>
table:=tablePow(degree um,pmod,plist)
table case "failed" => error "Table construction failed in MLIFT"
lifting1(um,lvar,nplist,vlist,tlist,empty(),listdeg,table,pmod)
ldcoef:DetCoef:=npcoef(um,plist,tlist)
if not empty?(listdet:=ldcoef.deter) then
if #listdet = #plist then return listdet
plist:=ldcoef.nfacts
nplist:=[map(coerce,pp)$SUPF2(R,P) for pp in plist]
um:=(um exquo */[pol for pol in listdet])::SUP
tlist:=ldcoef.nlead
tab:=tablePow(degree um,pmod,plist.rest)
else tab:=tablePow(degree um,pmod,plist)
tab case "failed" => error "Table construction failed in MLIFT"
table:Table:=tab
ffl:=lifting1(um,lvar,nplist,vlist,tlist,ldcoef.dterm,listdeg,table,pmod)
if ffl case "failed" then return "failed"
append(listdet,ffl:: L SUP)
-- normalDerivM(f,m,x) = the normalized (divided by m!) m-th
-- derivative with respect to x of the multivariate polynomial f
normalDerivM(g:P,m:Z,x:OV) : P ==
multivariate(normalDeriv(univariate(g,x),m),x)
normalDeriv(f:SUP,m:Z) : SUP ==
(n1:Z:=degree f) < m => 0$SUP
n1=m => leadingCoefficient f :: SUP
k:=binomial(n1,m)
ris:SUP:=0$SUP
n:Z:=n1
while n>= m repeat
while n1>n repeat
k:=(k*(n1-m)) quo n1
n1:=n1-1
ris:=ris+monomial(k*leadingCoefficient f,(n-m)::NNI)
f:=reductum f
n:=degree f
ris
subslead(m:SUP,pol:P):SUP ==
dm:NNI:=degree m
monomial(pol,dm)+reductum m
subscoef(um:SUP,lterm:L Term):SUP ==
dm:NNI:=degree um
new:=monomial(leadingCoefficient um,dm)
for k in dm-1..0 by -1 repeat
i:NNI:=k::NNI
empty?(lterm) or lterm.first.expt~=i =>
new:=new+monomial(coefficient(um,i),i)
new:=new+monomial(lterm.first.pcoef,i)
lterm:=lterm.rest
new
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package MLIFT MultivariateLifting>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|