1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra mfinfact.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package MFINFACT MultFiniteFactorize}
<<package MFINFACT MultFiniteFactorize>>=
)abbrev package MFINFACT MultFiniteFactorize
++ Author: P. Gianni
++ Date Created: Summer 1990
++ Date Last Updated: 19 March 1992
++ Basic Functions:
++ Related Constructors: PrimeField, FiniteField, Polynomial
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description: Package for factorization of multivariate polynomials
++ over finite fields.
MultFiniteFactorize(OV,E,F,PG) : C == T
where
F : FiniteFieldCategory
OV : OrderedSet
E : OrderedAbelianMonoidSup
PG : PolynomialCategory(F,E,OV)
SUP ==> SparseUnivariatePolynomial
R ==> SUP F
P ==> SparseMultivariatePolynomial(R,OV)
Z ==> Integer
FFPOLY ==> FiniteFieldPolynomialPackage(F)
MParFact ==> Record(irr:P,pow:Z)
MFinalFact ==> Record(contp:R,factors:List MParFact)
SUParFact ==> Record(irr:SUP P,pow:Z)
SUPFinalFact ==> Record(contp:R,factors:List SUParFact)
-- contp = content,
-- factors = List of irreducible factors with exponent
C == with
factor : PG -> Factored PG
++ factor(p) produces the complete factorization of the multivariate
++ polynomial p over a finite field.
factor : SUP PG -> Factored SUP PG
++ factor(p) produces the complete factorization of the multivariate
++ polynomial p over a finite field. p is represented as a univariate
++ polynomial with multivariate coefficients over a finite field.
T == add
import LeadingCoefDetermination(OV,IndexedExponents OV,R,P)
import MultivariateLifting(IndexedExponents OV,OV,R,P)
import FactoringUtilities(IndexedExponents OV,OV,R,P)
import FactoringUtilities(E,OV,F,PG)
import GenExEuclid(R,SUP R)
NNI ==> NonNegativeInteger
L ==> List
UPCF2 ==> UnivariatePolynomialCategoryFunctions2
LeadFact ==> Record(polfac:L P,correct:R,corrfact:L SUP R)
ContPrim ==> Record(cont:P,prim:P)
ParFact ==> Record(irr:SUP R,pow:Z)
FinalFact ==> Record(contp:R,factors:L ParFact)
NewOrd ==> Record(npol:SUP P,nvar:L OV,newdeg:L NNI)
Valuf ==> Record(inval:L L R,unvfact:L SUP R,lu:R,complead:L R)
---- Local Functions ----
ran : Z -> R
mFactor : (P,Z) -> MFinalFact
supFactor : (SUP P,Z) -> SUPFinalFact
mfconst : (SUP P,Z,L OV,L NNI) -> L SUP P
mfpol : (SUP P,Z,L OV,L NNI) -> L SUP P
varChoose : (P,L OV,L NNI) -> NewOrd
simplify : (P,Z,L OV,L NNI) -> MFinalFact
intChoose : (SUP P,L OV,R,L P,L L R) -> Valuf
pretest : (P,NNI,L OV,L R) -> FinalFact
checkzero : (SUP P,SUP R) -> Boolean
pushdcoef : PG -> P
pushdown : (PG,OV) -> P
pushupconst : (R,OV) -> PG
pushup : (P,OV) -> PG
norm : L SUP R -> Integer
constantCase : (P,L MParFact) -> MFinalFact
pM : L SUP R -> R
intfact : (SUP P,L OV,L NNI,MFinalFact,L L R) -> L SUP P
basicVar:OV:=NIL$Lisp pretend OV -- variable for the basic step
convertPUP(lfg:MFinalFact): SUPFinalFact ==
[lfg.contp,[[lff.irr ::SUP P,lff.pow]$SUParFact
for lff in lfg.factors]]$SUPFinalFact
supFactor(um:SUP P,dx:Z) : SUPFinalFact ==
degree(um)=0 => convertPUP(mFactor(ground um,dx))
lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um]
lcont:SUP P
lf:L SUP P
flead : SUPFinalFact:=[0,empty()]$SUPFinalFact
factorlist:L SUParFact :=empty()
mdeg :=minimumDegree um ---- is the Mindeg > 0? ----
if positive? mdeg then
f1:SUP P:=monomial(1,mdeg)
um:=(um exquo f1)::SUP P
factorlist:=cons([monomial(1,1),mdeg],factorlist)
if degree um=0 then return
lfg:=convertPUP mFactor(ground um, dx)
[lfg.contp,append(factorlist,lfg.factors)]
om:=map(pushup(#1,basicVar),um)$UPCF2(P,SUP P,PG,SUP PG)
sqfacs:=squareFree(om)
lcont:=map(pushdown(#1,basicVar),unit sqfacs)$UPCF2(PG,SUP PG,P,SUP P)
---- Factorize the content ----
if ground? lcont then
flead:=convertPUP constantCase(ground lcont,empty())
else
flead:=supFactor(lcont,dx)
factorlist:=flead.factors
---- Make the polynomial square-free ----
sqqfact:=[[map(pushdown(#1,basicVar),ff.factor),ff.exponent]
for ff in factors sqfacs]
--- Factorize the primitive square-free terms ---
for fact in sqqfact repeat
ffactor:SUP P:=fact.irr
ffexp:=fact.pow
ffcont:=content ffactor
coefs := coefficients ffactor
ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar]
if ground?(leadingCoefficient ffactor) then
lf:= mfconst(ffactor,dx,lvar,ldeg)
else lf:=mfpol(ffactor,dx,lvar,ldeg)
auxfl:=[[lfp,ffexp]$SUParFact for lfp in lf]
factorlist:=append(factorlist,auxfl)
lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI)
for f in factorlist]
[(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R,
factorlist]$SUPFinalFact
factor(um:SUP PG):Factored SUP PG ==
lv:List OV:=variables um
ld:=degree(um,lv)
dx:="min"/ld
basicVar:=lv.position(dx,ld)
cm:=map(pushdown(#1,basicVar),um)$UPCF2(PG,SUP PG,P,SUP P)
flist := supFactor(cm,dx)
pushupconst(flist.contp,basicVar)::SUP(PG) *
(*/[primeFactor(map(pushup(#1,basicVar),u.irr)$UPCF2(P,SUP P,PG,SUP PG),
u.pow) for u in flist.factors])
mFactor(m:P,dx:Z) : MFinalFact ==
ground?(m) => constantCase(m,empty())
lvar:L OV:= variables m
lcont:P
lf:L SUP P
flead : MFinalFact:=[1,empty()]$MFinalFact
factorlist:L MParFact :=empty()
---- is the Mindeg > 0? ----
lmdeg :=minimumDegree(m,lvar)
or/[positive? n for n in lmdeg] => simplify(m,dx,lvar,lmdeg)
---- Make the polynomial square-free ----
om:=pushup(m,basicVar)
sqfacs:=squareFree(om)
lcont := pushdown(unit sqfacs,basicVar)
---- Factorize the content ----
if ground? lcont then
flead:=constantCase(lcont,empty())
else
flead:=mFactor(lcont,dx)
factorlist:=flead.factors
sqqfact:List Record(factor:P,exponent:Integer)
sqqfact:=[[pushdown(ff.factor,basicVar),ff.exponent]
for ff in factors sqfacs]
--- Factorize the primitive square-free terms ---
for fact in sqqfact repeat
ffactor:P:=fact.factor
ffexp := fact.exponent
ground? ffactor =>
for lterm in constantCase(ffactor,empty()).factors repeat
factorlist:=cons([lterm.irr,lterm.pow * ffexp], factorlist)
lvar := variables ffactor
x:OV:=lvar.1
ldeg:=degree(ffactor,lvar)
--- Is the polynomial linear in one of the variables ? ---
member?(1,ldeg) =>
x:OV:=lvar.position(1,ldeg)
lcont:= gcd coefficients(univariate(ffactor,x))
ffactor:=(ffactor exquo lcont)::P
factorlist:=cons([ffactor,ffexp]$MParFact,factorlist)
for lcterm in mFactor(lcont,dx).factors repeat
factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist)
varch:=varChoose(ffactor,lvar,ldeg)
um:=varch.npol
ldeg:=ldeg.rest
lvar:=lvar.rest
if varch.nvar.1 ~= x then
lvar:= varch.nvar
x := lvar.1
lvar:=lvar.rest
pc:= gcd coefficients um
if not one? pc then
um:=(um exquo pc)::SUP P
ffactor:=multivariate(um,x)
for lcterm in mFactor(pc,dx).factors repeat
factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist)
ldeg:= degree(ffactor,lvar)
-- should be unitNormal if unified, but for now it is easier
lcum:F:= leadingCoefficient leadingCoefficient
leadingCoefficient um
if not one? lcum then
um:=((inv lcum)::R::P) * um
flead.contp := (lcum::R) *flead.contp
if ground?(leadingCoefficient um)
then lf:= mfconst(um,dx,lvar,ldeg)
else lf:=mfpol(um,dx,lvar,ldeg)
auxfl:=[[multivariate(lfp,x),ffexp]$MParFact for lfp in lf]
factorlist:=append(factorlist,auxfl)
flead.factors:= factorlist
flead
pM(lum:L SUP R) : R ==
x := monomial(1,1)$R
for i in 1..size()$F repeat
p := x + (index(i::PositiveInteger)$F) ::R
testModulus(p,lum) => return p
for e in 2.. repeat
p := (createIrreduciblePoly(e::PositiveInteger))$FFPOLY
testModulus(p,lum) => return p
while not((q := nextIrreduciblePoly(p)$FFPOLY) case "failed") repeat
p := q::SUP F
if testModulus(p, lum)$GenExEuclid(R, SUP R) then return p
---- push x in the coefficient domain for a term ----
pushdcoef(t:PG):P ==
map(coerce(#1)$R,t)$MPolyCatFunctions2(OV,E,
IndexedExponents OV,F,R,PG,P)
---- internal function, for testing bad cases ----
intfact(um:SUP P,lvar: L OV,ldeg:L NNI,
tleadpol:MFinalFact,ltry:L L R): L SUP P ==
polcase:Boolean:=(not empty? tleadpol.factors )
vfchoo:Valuf:=
polcase =>
leadpol:L P:=[ff.irr for ff in tleadpol.factors]
intChoose(um,lvar,tleadpol.contp,leadpol,ltry)
intChoose(um,lvar,1,empty(),empty())
unifact:List SUP R := vfchoo.unvfact
nfact:NNI := #unifact
nfact=1 => [um]
ltry:L L R:= vfchoo.inval
lval:L R:=first ltry
dd:= vfchoo.lu
lpol:List P:=empty()
leadval:List R:=empty()
if polcase then
leadval := vfchoo.complead
distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval)
distf case "failed" =>
return intfact(um,lvar,ldeg,tleadpol,ltry)
dist := distf :: LeadFact
-- check the factorization of leading coefficient
lpol:= dist.polfac
dd := dist.correct
unifact:=dist.corrfact
if not one? dd then
unifact := [dd*unifact.i for i in 1..nfact]
um := ((dd**(nfact-1)::NNI)::P)*um
(ffin:= lifting(um,lvar,unifact,lval,lpol,ldeg,pM(unifact)))
case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry)
factfin: L SUP P:=ffin :: L SUP P
if not one? dd then
factfin:=[primitivePart ff for ff in factfin]
factfin
-- the following functions are used to "push" x in the coefficient ring -
---- push back the variable ----
pushup(f:P,x:OV) :PG ==
ground? f => pushupconst((retract f)@R,x)
rr:PG:=0
while not zero? f repeat
lf:=leadingMonomial f
cf:=pushupconst(leadingCoefficient f,x)
lvf:=variables lf
rr:=rr+monomial(cf,lvf, degree(lf,lvf))$PG
f:=reductum f
rr
---- push x in the coefficient domain for a polynomial ----
pushdown(g:PG,x:OV) : P ==
ground? g => ((retract g)@F)::R::P
rf:P:=0$P
ug:=univariate(g,x)
while not zero? ug repeat
cf:=monomial(1,degree ug)$R
rf:=rf+cf*pushdcoef(leadingCoefficient ug)
ug := reductum ug
rf
---- push x back from the coefficient domain ----
pushupconst(r:R,x:OV):PG ==
ground? r => (retract r)@F ::PG
rr:PG:=0
while not zero? r repeat
rr:=rr+monomial((leadingCoefficient r)::PG,x,degree r)$PG
r:=reductum r
rr
-- This function has to be added to Eucliden domain
ran(k1:Z) : R ==
--if R case Integer then random()$R rem (2*k1)-k1
--else
+/[monomial(random()$F,i)$R for i in 0..k1]
checkzero(u:SUP P,um:SUP R) : Boolean ==
u=0 => um =0
um = 0 => false
degree u = degree um => checkzero(reductum u, reductum um)
false
--- Choose the variable of least degree ---
varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd ==
k:="min"/[d for d in ldeg]
k=degree(m,first lvar) =>
[univariate(m,first lvar),lvar,ldeg]$NewOrd
i:=position(k,ldeg)
x:OV:=lvar.i
ldeg:=cons(k,delete(ldeg,i))
lvar:=cons(x,delete(lvar,i))
[univariate(m,x),lvar,ldeg]$NewOrd
norm(lum: L SUP R): Integer == "max"/[degree lup for lup in lum]
--- Choose the values to reduce to the univariate case ---
intChoose(um:SUP P,lvar:L OV,clc:R,plist:L P,ltry:L L R) : Valuf ==
-- declarations
degum:NNI := degree um
nvar1:=#lvar
range:NNI:=0
unifact:L SUP R
ctf1 : R := 1
testp:Boolean := -- polynomial leading coefficient
plist = empty() => false
true
leadcomp,leadcomp1 : L R
leadcomp:=leadcomp1:=empty()
nfatt:NNI := degum+1
lffc:R:=1
lffc1:=lffc
newunifact : L SUP R:=empty()
leadtest:=true --- the lc test with polCase has to be performed
int:L R:=empty()
-- New sets of values are chosen until we find twice the
-- same number of "univariate" factors:the set smaller in modulo is
-- is chosen.
while true repeat
lval := [ ran(range) for i in 1..nvar1]
member?(lval,ltry) => range:=1+range
ltry := cons(lval,ltry)
leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist]
testp and or/[unit? epl for epl in leadcomp1] => range:=range+1
newm:SUP R:=completeEval(um,lvar,lval)
degum ~= degree newm or not zero? minimumDegree newm => range:=range+1
lffc1:=content newm
newm:=(newm exquo lffc1)::SUP R
testp and leadtest and not polCase(lffc1*clc,#plist,leadcomp1)
=> range:=range+1
Dnewm := differentiate newm
D2newm := map(differentiate, newm)
not zero? degree(gcd [newm,Dnewm,D2newm]) => range:=range+1
-- if R has Integer then luniv:=henselFact(newm,false)$
-- else
lcnm:F:=1
-- should be unitNormal if unified, but for now it is easier
if not one?(lcnm:=leadingCoefficient leadingCoefficient newm) then
newm:=((inv lcnm)::R)*newm
dx:="max"/[degree uc for uc in coefficients newm]
luniv:=generalTwoFactor(newm)$TwoFactorize(F)
lunivf:= factors luniv
nf:= #lunivf
nf=0 or nf>nfatt => "next values" --- pretest failed ---
--- the univariate polynomial is irreducible ---
if nf=1 then leave (unifact:=[newm])
lffc1:=lcnm * retract(unit luniv)@R * lffc1
-- the new integer give the same number of factors
nfatt = nf =>
-- if this is the first univariate factorization with polCase=true
-- or if the last factorization has smaller norm and satisfies
-- polCase
if leadtest or
((norm unifact > norm [ff.factor for ff in lunivf]) and
(not testp or polCase(lffc1*clc,#plist,leadcomp1))) then
unifact:=[uf.factor for uf in lunivf]
int:=lval
lffc:=lffc1
if testp then leadcomp:=leadcomp1
leave "foundit"
-- the first univariate factorization, inizialize
nfatt > degum =>
unifact:=[uf.factor for uf in lunivf]
lffc:=lffc1
if testp then leadcomp:=leadcomp1
int:=lval
leadtest := false
nfatt := nf
nfatt>nf => -- for the previous values there were more factors
if testp then leadtest := not polCase(lffc*clc,#plist,leadcomp)
else leadtest:= false
-- if polCase=true we can consider the univariate decomposition
if not leadtest then
unifact:=[uf.factor for uf in lunivf]
lffc:=lffc1
if testp then leadcomp:=leadcomp1
int:=lval
nfatt := nf
[cons(int,ltry),unifact,lffc,leadcomp]$Valuf
constantCase(m:P,factorlist:List MParFact) : MFinalFact ==
--if R case Integer then [const m,factorlist]$MFinalFact
--else
lunm:=distdfact((retract m)@R,false)$DistinctDegreeFactorize(F,R)
[(lunm.cont)::R, append(factorlist,
[[(pp.irr)::P,pp.pow] for pp in lunm.factors])]$MFinalFact
---- The polynomial has mindeg>0 ----
simplify(m:P,dm:Z,lvar:L OV,lmdeg:L NNI):MFinalFact ==
factorlist:L MParFact:=empty()
pol1:P:= 1$P
for x in lvar repeat
i := lmdeg.(position(x,lvar))
i=0 => "next value"
pol1:=pol1*monomial(1$P,x,i)
factorlist:=cons([x::P,i]$MParFact,factorlist)
m := (m exquo pol1)::P
ground? m => constantCase(m,factorlist)
flead:=mFactor(m,dm)
flead.factors:=append(factorlist,flead.factors)
flead
---- m square-free,primitive,lc constant ----
mfconst(um:SUP P,dm:Z,lvar:L OV,ldeg:L NNI):L SUP P ==
nsign:Boolean
factfin:L SUP P:=empty()
empty? lvar =>
um1:SUP R:=map(ground,
um)$UPCF2(P,SUP P,R,SUP R)
lum:= generalTwoFactor(um1)$TwoFactorize(F)
[map(coerce,lumf.factor)$UPCF2(R,SUP R,P,SUP P)
for lumf in factors lum]
intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty())
--- m is square-free,primitive,lc is a polynomial ---
mfpol(um:SUP P,dm:Z,lvar:L OV,ldeg:L NNI):L SUP P ==
dist : LeadFact
tleadpol:=mFactor(leadingCoefficient um,dm)
intfact(um,lvar,ldeg,tleadpol,empty())
factor(m:PG):Factored PG ==
lv:=variables m
lv=empty() => makeFR(m,empty() )
-- reduce to multivariate over SUP
ld:=[degree(m,x) for x in lv]
dx:="min"/ld
basicVar:=lv(position(dx,ld))
cm:=pushdown(m,basicVar)
flist := mFactor(cm,dx)
pushupconst(flist.contp,basicVar) *
(*/[primeFactor(pushup(u.irr,basicVar),u.pow)
for u in flist.factors])
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package MFINFACT MultFiniteFactorize>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|