1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra matstor.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package MATSTOR StorageEfficientMatrixOperations}
<<package MATSTOR StorageEfficientMatrixOperations>>=
)abbrev package MATSTOR StorageEfficientMatrixOperations
++ Author: Clifton J. Williamson
++ Date Created: 18 July 1990
++ Date Last Updated: 18 July 1990
++ Basic Operations:
++ Related Domains: Matrix(R)
++ Also See:
++ AMS Classifications:
++ Keywords: matrix, linear algebra
++ Examples:
++ References:
++ Description:
++ This package provides standard arithmetic operations on matrices.
++ The functions in this package store the results of computations
++ in existing matrices, rather than creating new matrices. This
++ package works only for matrices of type Matrix and uses the
++ internal representation of this type.
StorageEfficientMatrixOperations(R): Exports == Implementation where
R : Ring
M ==> Matrix R
NNI ==> NonNegativeInteger
ARR ==> PrimitiveArray R
REP ==> PrimitiveArray PrimitiveArray R
Exports ==> with
copy_! : (M,M) -> M
++ \spad{copy!(c,a)} copies the matrix \spad{a} into the matrix c.
++ Error: if \spad{a} and c do not have the same
++ dimensions.
plus_! : (M,M,M) -> M
++ \spad{plus!(c,a,b)} computes the matrix sum \spad{a + b} and stores the
++ result in the matrix c.
++ Error: if \spad{a}, b, and c do not have the same dimensions.
minus_! : (M,M) -> M
++ \spad{minus!(c,a)} computes \spad{-a} and stores the result in the
++ matrix c.
++ Error: if a and c do not have the same dimensions.
minus_! : (M,M,M) -> M
++ \spad{!minus!(c,a,b)} computes the matrix difference \spad{a - b}
++ and stores the result in the matrix c.
++ Error: if \spad{a}, b, and c do not have the same dimensions.
leftScalarTimes_! : (M,R,M) -> M
++ \spad{leftScalarTimes!(c,r,a)} computes the scalar product
++ \spad{r * a} and stores the result in the matrix c.
++ Error: if \spad{a} and c do not have the same dimensions.
rightScalarTimes_! : (M,M,R) -> M
++ \spad{rightScalarTimes!(c,a,r)} computes the scalar product
++ \spad{a * r} and stores the result in the matrix c.
++ Error: if \spad{a} and c do not have the same dimensions.
times_! : (M,M,M) -> M
++ \spad{times!(c,a,b)} computes the matrix product \spad{a * b}
++ and stores the result in the matrix c.
++ Error: if \spad{a}, b, and c do not have
++ compatible dimensions.
power_! : (M,M,M,M,NNI) -> M
++ \spad{power!(a,b,c,m,n)} computes m ** n and stores the result in
++ \spad{a}. The matrices b and c are used to store intermediate results.
++ Error: if \spad{a}, b, c, and m are not square
++ and of the same dimensions.
** : (M,NNI) -> M
++ \spad{x ** n} computes the n-th power
++ of a square matrix. The power n is assumed greater than 1.
Implementation ==> add
rep : M -> REP
rep m == m pretend REP
copy_!(c,a) ==
m := nrows a; n := ncols a
not((nrows c) = m and (ncols c) = n) =>
error "copy!: matrices of incompatible dimensions"
aa := rep a; cc := rep c
for i in 0..(m-1) repeat
aRow := qelt(aa,i); cRow := qelt(cc,i)
for j in 0..(n-1) repeat
qsetelt_!(cRow,j,qelt(aRow,j))
c
plus_!(c,a,b) ==
m := nrows a; n := ncols a
not((nrows b) = m and (ncols b) = n) =>
error "plus!: matrices of incompatible dimensions"
not((nrows c) = m and (ncols c) = n) =>
error "plus!: matrices of incompatible dimensions"
aa := rep a; bb := rep b; cc := rep c
for i in 0..(m-1) repeat
aRow := qelt(aa,i); bRow := qelt(bb,i); cRow := qelt(cc,i)
for j in 0..(n-1) repeat
qsetelt_!(cRow,j,qelt(aRow,j) + qelt(bRow,j))
c
minus_!(c,a) ==
m := nrows a; n := ncols a
not((nrows c) = m and (ncols c) = n) =>
error "minus!: matrices of incompatible dimensions"
aa := rep a; cc := rep c
for i in 0..(m-1) repeat
aRow := qelt(aa,i); cRow := qelt(cc,i)
for j in 0..(n-1) repeat
qsetelt_!(cRow,j,-qelt(aRow,j))
c
minus_!(c,a,b) ==
m := nrows a; n := ncols a
not((nrows b) = m and (ncols b) = n) =>
error "minus!: matrices of incompatible dimensions"
not((nrows c) = m and (ncols c) = n) =>
error "minus!: matrices of incompatible dimensions"
aa := rep a; bb := rep b; cc := rep c
for i in 0..(m-1) repeat
aRow := qelt(aa,i); bRow := qelt(bb,i); cRow := qelt(cc,i)
for j in 0..(n-1) repeat
qsetelt_!(cRow,j,qelt(aRow,j) - qelt(bRow,j))
c
leftScalarTimes_!(c,r,a) ==
m := nrows a; n := ncols a
not((nrows c) = m and (ncols c) = n) =>
error "leftScalarTimes!: matrices of incompatible dimensions"
aa := rep a; cc := rep c
for i in 0..(m-1) repeat
aRow := qelt(aa,i); cRow := qelt(cc,i)
for j in 0..(n-1) repeat
qsetelt_!(cRow,j,r * qelt(aRow,j))
c
rightScalarTimes_!(c,a,r) ==
m := nrows a; n := ncols a
not((nrows c) = m and (ncols c) = n) =>
error "rightScalarTimes!: matrices of incompatible dimensions"
aa := rep a; cc := rep c
for i in 0..(m-1) repeat
aRow := qelt(aa,i); cRow := qelt(cc,i)
for j in 0..(n-1) repeat
qsetelt_!(cRow,j,qelt(aRow,j) * r)
c
copyCol_!: (ARR,REP,Integer,Integer) -> ARR
copyCol_!(bCol,bb,j,n1) ==
for i in 0..n1 repeat qsetelt_!(bCol,i,qelt(qelt(bb,i),j))
times_!(c,a,b) ==
m := nrows a; n := ncols a; p := ncols b
not((nrows b) = n and (nrows c) = m and (ncols c) = p) =>
error "times!: matrices of incompatible dimensions"
aa := rep a; bb := rep b; cc := rep c
bCol : ARR := new(n,0)
m1 := (m :: Integer) - 1; n1 := (n :: Integer) - 1
for j in 0..(p-1) repeat
copyCol_!(bCol,bb,j,n1)
for i in 0..m1 repeat
aRow := qelt(aa,i); cRow := qelt(cc,i)
sum : R := 0
for k in 0..n1 repeat
sum := sum + qelt(aRow,k) * qelt(bCol,k)
qsetelt_!(cRow,j,sum)
c
power_!(a,b,c,m,p) ==
mm := nrows a; nn := ncols a
not(mm = nn) =>
error "power!: matrix must be square"
not((nrows b) = mm and (ncols b) = nn) =>
error "power!: matrices of incompatible dimensions"
not((nrows c) = mm and (ncols c) = nn) =>
error "power!: matrices of incompatible dimensions"
not((nrows m) = mm and (ncols m) = nn) =>
error "power!: matrices of incompatible dimensions"
flag := false
copy_!(b,m)
repeat
if odd? p then
flag =>
times_!(c,b,a)
copy_!(a,c)
flag := true
copy_!(a,b)
one? p => return a
p := p quo 2
times_!(c,b,b)
copy_!(b,c)
m ** n ==
not square? m => error "**: matrix must be square"
a := copy m; b := copy m; c := copy m
power_!(a,b,c,m,n)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package MATSTOR StorageEfficientMatrixOperations>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|