aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/logic.spad.pamphlet
blob: 895051f28aa3bba984c573f3b66859ee0a350076 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
\documentclass{article}
\usepackage{open-axiom}

\title{src/algebra logic.spad}
\author{Gabriel Dos~Reis}

\section{category LOGIC Logic}

<<category LOGIC Logic>>=
)abbrev category LOGIC Logic
++ Author: 
++ Date Created:
++ Date Last Changed: May 27, 2009
++ Basic Operations: ~, /\, \/
++ Related Constructors:
++ Keywords: boolean
++ Description:  
++   `Logic' provides the basic operations for lattices,
++   e.g., boolean algebra.
Logic: Category == Type with
    ~:        % -> %
     ++ \spad{~x} returns the logical complement of \spad{x}.
    /\:       (%, %) -> %
     ++ \spad {x/\y} returns the logical `meet', e.g. conjunction, of
     ++ \spad{x} and \spad{y}.
    \/:       (%, %) -> %
     ++ \spad{x\/y} returns the logical `join', e.g. disjunction, or
     ++ \spad{x} and \spad{y}.
  add
    x \/ y == ~(~x /\ ~y)

@

\section{Categories an domains for logic}

<<category BOOLE BooleanLogic>>=
)abbrev category BOOLE BooleanLogic
++ Author: Gabriel Dos Reis
++ Date Created: April 04, 2010
++ Date Last Modified: April 04, 2010
++ Description:
++   This is the category of Boolean logic structures.
BooleanLogic(): Category == Logic with
    not: % -> %
      ++ \spad{not x} returns the complement or negation of \spad{x}.
    and: (%,%) -> %
      ++ \spad{x and y} returns the conjunction of \spad{x} and \spad{y}.
    or: (%,%) -> %
      ++ \spad{x or y} returns the disjunction of \spad{x} and \spad{y}.
  add
    not x == ~ x
    x and y == x /\ y
    x or y == x \/ y
@

<<category PROPLOG PropositionalLogic>>=
)abbrev category PROPLOG PropositionalLogic
++ Author: Gabriel Dos Reis
++ Date Created: Januray 14, 2008
++ Date Last Modified: May 27, 2009
++ Description: This category declares the connectives of
++ Propositional Logic.
PropositionalLogic(): Category == Join(BooleanLogic,SetCategory) with
  true: %
    ++ \spad{true} is a logical constant.
  false: %
    ++ \spad{false} is a logical constant.
  implies: (%,%) -> %
    ++ \spad{implies(p,q)} returns the logical implication of `q' by `p'.
  equiv: (%,%) -> %
    ++ \spad{equiv(p,q)} returns the logical equivalence of `p', `q'.
@

\section{domain PROPFRML PropositionalFormula}
<<domain PROPFRML PropositionalFormula>>=
)set mess autoload on
)abbrev domain PROPFRML PropositionalFormula
++ Author: Gabriel Dos Reis
++ Date Created: Januray 14, 2008
++ Date Last Modified: February, 2011
++ Description: This domain implements propositional formula build
++ over a term domain, that itself belongs to PropositionalLogic
PropositionalFormula(T: SetCategory): Public == Private where
  Public == Join(PropositionalLogic, CoercibleFrom T) with
    isAtom : % -> Maybe T
      ++ \spad{isAtom f} returns a value \spad{v} such that
      ++ \spad{v case T} holds if the formula \spad{f} is a term.

    isNot : % -> Maybe %
      ++ \spad{isNot f} returns a value \spad{v} such that
      ++ \spad{v case %} holds if the formula \spad{f} is a negation.

    isAnd : % -> Maybe Pair(%,%)
      ++ \spad{isAnd f} returns a value \spad{v} such that 
      ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
      ++ is a conjunction formula.

    isOr : % -> Maybe Pair(%,%)
      ++ \spad{isOr f} returns a value \spad{v} such that 
      ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
      ++ is a disjunction formula.

    isImplies : % -> Maybe Pair(%,%)
      ++ \spad{isImplies f} returns a value \spad{v} such that 
      ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
      ++ is an implication formula.

    isEquiv : % -> Maybe Pair(%,%)
      ++ \spad{isEquiv f} returns a value \spad{v} such that 
      ++ \spad{v case Pair(%,%)} holds if the formula \spad{f}
      ++ is an equivalence formula.

    conjunction: (%,%) -> %
      ++ \spad{conjunction(p,q)} returns a formula denoting the
      ++ conjunction of \spad{p} and \spad{q}.

    disjunction: (%,%) -> %
      ++ \spad{disjunction(p,q)} returns a formula denoting the
      ++ disjunction of \spad{p} and \spad{q}.

  Private == add
    Rep == Union(T, Kernel %)
    import Kernel %
    import BasicOperator
    import KernelFunctions2(Identifier,%)
    import List %

    -- Local names for proposition logical operators
    macro FALSE == '%false
    macro TRUE == '%true
    macro NOT == '%not
    macro AND == '%and
    macro OR == '%or
    macro IMP == '%implies
    macro EQV == '%equiv

    -- Return the nesting level of a formula
    level(f: %): NonNegativeInteger ==
      f' := rep f
      f' case T => 0
      height f'

    -- A term is a formula
    coerce(t: T): % == 
      per t

    false == per constantKernel FALSE
    true == per constantKernel TRUE

    ~ p ==
      per kernel(operator(NOT, 1::Arity), [p], 1 + level p)

    conjunction(p,q) ==
      per kernel(operator(AND, 2), [p, q], 1 + max(level p, level q))

    p /\ q == conjunction(p,q)

    disjunction(p,q) ==
      per kernel(operator(OR, 2), [p, q], 1 + max(level p, level q))

    p \/ q == disjunction(p,q)

    implies(p,q) ==
      per kernel(operator(IMP, 2), [p, q], 1 + max(level p, level q))

    equiv(p,q) ==
      per kernel(operator(EQV, 2), [p, q], 1 + max(level p, level q))

    isAtom f ==
      f' := rep f
      f' case T => just(f'@T)
      nothing

    isNot f ==
      f' := rep f
      f' case Kernel(%) and is?(f', NOT) => just(first argument f')
      nothing

    isBinaryOperator(f: Kernel %, op: Symbol): Maybe Pair(%, %) ==
      not is?(f, op) => nothing
      args := argument f
      just pair(first args, second args)

    isAnd f ==
      f' := rep f
      f' case Kernel % => isBinaryOperator(f', AND)
      nothing

    isOr f ==
      f' := rep f
      f' case Kernel % => isBinaryOperator(f', OR)
      nothing

    isImplies f ==
      f' := rep f
      f' case Kernel % => isBinaryOperator(f', IMP)
      nothing


    isEquiv f ==
      f' := rep f
      f' case Kernel % => isBinaryOperator(f', EQV)
      nothing

    -- Unparsing grammar.
    --
    -- Ideally, the following syntax would the external form
    -- Formula:
    --   EquivFormula
    --
    -- EquivFormula:
    --   ImpliesFormula
    --   ImpliesFormula <=> EquivFormula
    --
    -- ImpliesFormula:
    --   OrFormula
    --   OrFormula => ImpliesFormula
    --
    -- OrFormula:
    --   AndFormula
    --   AndFormula or OrFormula 
    -- 
    -- AndFormula
    --   NotFormula
    --   NotFormula and AndFormula
    --
    -- NotFormula:
    --   PrimaryFormula
    --   not NotFormula
    --
    -- PrimaryFormula:
    --   Term
    --   ( Formula )
    --
    -- Note: Since the token '=>' already means a construct different
    --       from what we would like to have as a notation for
    --       propositional logic, we will output the formula `p => q'
    --       as implies(p,q), which looks like a function call.
    --       Similarly, we do not have the token `<=>' for logical
    --       equivalence; so we unparser `p <=> q' as equiv(p,q).
    --
    --       So, we modify the nonterminal PrimaryFormula to read
    --       PrimaryFormula:
    --         Term
    --         implies(Formula, Formula)
    --         equiv(Formula, Formula)
    formula: % -> OutputForm
    coerce(p: %): OutputForm ==
      formula p

    primaryFormula(p: %): OutputForm ==
      p' := rep p
      p' case T => p'@T::OutputForm
      case constantIfCan p' is
        c@Identifier => c::OutputForm
        otherwise =>
          is?(p', IMP) or is?(p', EQV) =>
            args := argument p'
            elt(operator(p')::OutputForm, 
                  [formula first args, formula second args])$OutputForm
          paren(formula p)$OutputForm

    notFormula(p: %): OutputForm ==
      case isNot p is
        f@% => elt(outputForm 'not, [notFormula f])$OutputForm
        otherwise => primaryFormula p

    andFormula(f: %): OutputForm ==
      case isAnd f is
	p@Pair(%,%) =>
          -- ??? idealy, we should be using `and$OutputForm' but
          -- ??? a bug in the compiler currently prevents that.
          infix(outputForm 'and, notFormula first p,
             andFormula second p)$OutputForm
        otherwise => notFormula f

    orFormula(f: %): OutputForm ==
      case isOr f is
        p@Pair(%,%) => 
          -- ??? idealy, we should be using `or$OutputForm' but
          -- ??? a bug in the compiler currently prevents that.
          infix(outputForm 'or, andFormula first p, 
             orFormula second p)$OutputForm
        otherwise => andFormula f

    formula f ==
      -- Note: this should be equivFormula, but see the explanation above.
      orFormula f

@

<<package PROPFUN1 PropositionalFormulaFunctions1>>=
)abbrev package PROPFUN1 PropositionalFormulaFunctions1
++ Author: Gabriel Dos Reis
++ Date Created: April 03, 2010
++ Date Last Modified: April 03, 2010
++ Description:
++   This package collects unary functions operating on propositional
++   formulae.
PropositionalFormulaFunctions1(T): Public == Private where
  T: SetCategory
  Public == Type with
    dual: PropositionalFormula T -> PropositionalFormula T
      ++ \spad{dual f} returns the dual of the proposition \spad{f}.
    atoms: PropositionalFormula T -> Set T
      ++ \spad{atoms f} ++ returns the set of atoms appearing in
      ++ the formula \spad{f}.
    simplify: PropositionalFormula T -> PropositionalFormula T
      ++ \spad{simplify f} returns a formula logically equivalent
      ++ to \spad{f} where obvious tautologies have been removed.
  Private == add
    macro F == PropositionalFormula T
    inline Pair(F,F)

    dual f ==
      f = true$F => false$F
      f = false$F => true$F
      isAtom f case T => f
      (f1 := isNot f) case F => not dual f1
      (f2 := isAnd f) case Pair(F,F) =>
         disjunction(dual first f2, dual second f2)
      (f2 := isOr f) case Pair(F,F) =>
         conjunction(dual first f2, dual second f2)
      error "formula contains `equiv' or `implies'"

    atoms f ==
      (t := isAtom f) case T => { t }
      (f1 := isNot f) case F => atoms f1
      (f2 := isAnd f) case Pair(F,F) =>
         union(atoms first f2, atoms second f2)
      (f2 := isOr f) case Pair(F,F) =>
         union(atoms first f2, atoms second f2)
      empty()$Set(T)

    -- one-step simplification helper function
    simplifyOneStep(f: F): F ==
      (f1 := isNot f) case F =>
        f1 = true$F => false$F
        f1 = false$F => true$F
        (f1' := isNot f1) case F => f1'         -- assume classical logic
        f
      (f2 := isAnd f) case Pair(F,F) =>
        first f2 = false$F or second f2 = false$F => false$F
        first f2 = true$F => second f2
        second f2 = true$F => first f2
        f
      (f2 := isOr f) case Pair(F,F) =>
        first f2 = false$F => second f2
        second f2 = false$F => first f2
        first f2 = true$F or second f2 = true$F => true$F
        f
      (f2 := isImplies f) case Pair(F,F) =>
        first f2 = false$F or second f2 = true$F => true$F
        first f2 = true$F => second f2
        second f2 = false$F => not first f2
        f
      (f2 := isEquiv f) case Pair(F,F) =>
        first f2 = true$F => second f2
        second f2 = true$F => first f2
        first f2 = false$F => not second f2
        second f2 = false$F => not first f2
        f
      f

    simplify f ==
      (f1 := isNot f) case F => simplifyOneStep(not simplify f1)
      (f2 := isAnd f) case Pair(F,F) =>
        simplifyOneStep(conjunction(simplify first f2, simplify second f2))
      (f2 := isOr f) case Pair(F,F) =>
        simplifyOneStep(disjunction(simplify first f2, simplify second f2))
      (f2 := isImplies f) case Pair(F,F) =>
        simplifyOneStep(implies(simplify first f2, simplify second f2))
      (f2 := isEquiv f) case Pair(F,F) =>
        simplifyOneStep(equiv(simplify first f2, simplify second f2))
      f
@

<<package PROPFUN2 PropositionalFormulaFunctions2>>=
)abbrev package PROPFUN2 PropositionalFormulaFunctions2
++ Author: Gabriel Dos Reis
++ Date Created: April 03, 2010
++ Date Last Modified: April 03, 2010
++ Description:
++   This package collects binary functions operating on propositional
++   formulae.
PropositionalFormulaFunctions2(S,T): Public == Private where
  S: SetCategory
  T: SetCategory
  Public == Type with
    map: (S -> T, PropositionalFormula S) -> PropositionalFormula T
      ++ \spad{map(f,x)} returns a propositional formula where
      ++ all atoms in \spad{x} have been replaced by the result
      ++ of applying the function \spad{f} to them.
  Private == add
    macro FS == PropositionalFormula S
    macro FT == PropositionalFormula T
    map(f,x) ==
      x = true$FS => true$FT
      x = false$FS => false$FT
      (t := isAtom x) case S => f(t)::FT
      (f1 := isNot x) case FS => not map(f,f1)
      (f2 := isAnd x) case Pair(FS,FS) =>
         conjunction(map(f,first f2), map(f,second f2))
      (f2 := isOr x) case Pair(FS,FS) =>
         disjunction(map(f,first f2), map(f,second f2))
      (f2 := isImplies x) case Pair(FS,FS) =>
         implies(map(f,first f2), map(f,second f2))
      (f2 := isEquiv x) case Pair(FS,FS) =>
         equiv(map(f,first f2), map(f,second f2))
      error "invalid propositional formula"

@


\section{Kleene's Three-Valued Logic}
<<domain KTVLOGIC KleeneTrivalentLogic>>=
)abbrev domain KTVLOGIC KleeneTrivalentLogic
++ Author: Gabriel Dos Reis
++ Date Created: September 20, 2008
++ Date Last Modified: January 14, 2012
++ Description: 
++   This domain implements Kleene's 3-valued propositional logic.
KleeneTrivalentLogic(): Public == Private where
  Public == Join(PropositionalLogic,Finite) with
    unknown: %     ++ the indefinite `unknown' 
    case: (%,[| false |]) -> Boolean
      ++ x case false holds if the value of `x' is `false'
    case: (%,[| unknown |]) -> Boolean
      ++ x case unknown holds if the value of `x' is `unknown'
    case: (%,[| true |]) -> Boolean
      ++ s case true holds if the value of `x' is `true'.
  Private == Maybe Boolean add
    false == per just(false@Boolean)
    unknown == per nothing
    true == per just(true@Boolean)
    x = y == rep x = rep y
    x case true == x = true@%
    x case false == x = false@%
    x case unknown == x = unknown

    not x ==
      x case false => true
      x case unknown => unknown
      false

    x and y ==
      x case false => false
      x case unknown =>
        y case false => false
        unknown
      y

    x or y ==
      x case false => y
      x case true => x
      y case true => y
      unknown

    implies(x,y) ==
      x case false => true
      x case true => y
      y case true => true
      unknown

    equiv(x,y) ==
      x case unknown => x
      x case true => y
      not y

    coerce(x: %): OutputForm ==
      case rep x is
        y@Boolean => y::OutputForm
        otherwise => outputForm 'unknown

    size() == 3

    index n ==
      n > 3 => error "index: argument out of bound"
      n = 1 => false
      n = 2 => unknown
      true

    lookup x ==
      x = false => 1
      x = unknown => 2
      3
@

\section{License}

<<license>>=
--Copyright (C) 1991-2002, The Numerical Algorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2013, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical Algorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category LOGIC Logic>>
<<category BOOLE BooleanLogic>>

<<category PROPLOG PropositionalLogic>>
<<domain PROPFRML PropositionalFormula>>
<<package PROPFUN1 PropositionalFormulaFunctions1>>
<<package PROPFUN2 PropositionalFormulaFunctions2>>

<<domain KTVLOGIC KleeneTrivalentLogic>>

@


\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}