1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra intrf.spad}
\author{Barry Trager, Renaud Rioboo, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SUBRESP SubResultantPackage}
<<package SUBRESP SubResultantPackage>>=
)abbrev package SUBRESP SubResultantPackage
++ Subresultants
++ Author: Barry Trager, Renaud Rioboo
++ Date Created: 1987
++ Date Last Updated: August 2000
++ Description:
++ This package computes the subresultants of two polynomials which is needed
++ for the `Lazard Rioboo' enhancement to Tragers integrations formula
++ For efficiency reasons this has been rewritten to call Lionel Ducos
++ package which is currently the best one.
++
SubResultantPackage(R, UP): Exports == Implementation where
R : IntegralDomain
UP: UnivariatePolynomialCategory R
Z ==> Integer
N ==> NonNegativeInteger
Exports ==> with
subresultantVector: (UP, UP) -> PrimitiveArray UP
++ subresultantVector(p, q) returns \spad{[p0,...,pn]}
++ where pi is the i-th subresultant of p and q.
++ In particular, \spad{p0 = resultant(p, q)}.
if R has EuclideanDomain then
primitivePart : (UP, R) -> UP
++ primitivePart(p, q) reduces the coefficient of p
++ modulo q, takes the primitive part of the result,
++ and ensures that the leading coefficient of that
++ result is monic.
Implementation ==> add
Lionel ==> PseudoRemainderSequence(R,UP)
if R has EuclideanDomain then
primitivePart(p, q) ==
rec := extendedEuclidean(leadingCoefficient p, q,
1)::Record(coef1:R, coef2:R)
unitCanonical primitivePart map((rec.coef1 * #1) rem q, p)
subresultantVector(p1, p2) ==
F : UP -- auxiliary stuff !
res : PrimitiveArray(UP) := new(2+max(degree(p1),degree(p2)), 0)
--
-- kind of stupid interface to Lionel's Package !!!!!!!!!!!!
-- might have been wiser to rewrite the loop ...
-- But I'm too lazy. [rr]
--
l := chainSubResultants(p1,p2)$Lionel
--
-- this returns the chain of non null subresultants !
-- we must rebuild subresultants from this.
-- we really hope Lionel Ducos minded what he wrote
-- since we are fully blind !
--
null l =>
-- Hum it seems that Lionel returns [] when min(|p1|,|p2|) = 0
zero?(degree(p1)) =>
res.degree(p2) := p2
if degree(p2) > 0
then
res.((degree(p2)-1)::NonNegativeInteger) := p1
res.0 := (leadingCoefficient(p1)**(degree p2)) :: UP
else
-- both are of degree 0 the resultant is 1 according to Loos
res.0 := 1
res
zero?(degree(p2)) =>
if degree(p1) > 0
then
res.((degree(p1)-1)::NonNegativeInteger) := p2
res.0 := (leadingCoefficient(p2)**(degree p1)) :: UP
else
-- both are of degree 0 the resultant is 1 according to Loos
res.0 := 1
res
error "SUBRESP: strange Subresultant chain from PRS"
Sn := first(l)
--
-- as of Loos definitions last subresultant should not be defective
--
l := rest(l)
n := degree(Sn)
F := Sn
null l => error "SUBRESP: strange Subresultant chain from PRS"
zero? Sn => error "SUBRESP: strange Subresultant chain from PRS"
while (l ~= []) repeat
res.(n) := Sn
F := first(l)
l := rest(l)
-- F is potentially defective
if degree(F) = n
then
--
-- F is defective
--
null l => error "SUBRESP: strange Subresultant chain from PRS"
Sn := first(l)
l := rest(l)
n := degree(Sn)
res.((n-1)::NonNegativeInteger) := F
else
--
-- F is non defective
--
degree(F) < n => error "strange result !"
Sn := F
n := degree(Sn)
--
-- Lionel forgets about p1 if |p1| > |p2|
-- forgets about p2 if |p2| > |p1|
-- but he reminds p2 if |p1| = |p2|
-- a glance at Loos should correct this !
--
res.n := Sn
--
-- Loos definition
--
if degree(p1) = degree(p2)
then
res.((degree p1)+1) := p1
else
if degree(p1) > degree(p2)
then
res.(degree p1) := p1
else
res.(degree p2) := p2
res
@
\section{package MONOTOOL MonomialExtensionTools}
<<package MONOTOOL MonomialExtensionTools>>=
)abbrev package MONOTOOL MonomialExtensionTools
++ Tools for handling monomial extensions
++ Author: Manuel Bronstein
++ Date Created: 18 August 1992
++ Date Last Updated: 3 June 1993
++ Description: Tools for handling monomial extensions.
MonomialExtensionTools(F, UP): Exports == Implementation where
F : Field
UP: UnivariatePolynomialCategory F
RF ==> Fraction UP
FR ==> Factored UP
Exports ==> with
split : (UP, UP -> UP) -> Record(normal:UP, special:UP)
++ split(p, D) returns \spad{[n,s]} such that \spad{p = n s},
++ all the squarefree factors of n are normal w.r.t. D,
++ and s is special w.r.t. D.
++ D is the derivation to use.
splitSquarefree: (UP, UP -> UP) -> Record(normal:FR, special:FR)
++ splitSquarefree(p, D) returns
++ \spad{[n_1 n_2\^2 ... n_m\^m, s_1 s_2\^2 ... s_q\^q]} such that
++ \spad{p = n_1 n_2\^2 ... n_m\^m s_1 s_2\^2 ... s_q\^q}, each
++ \spad{n_i} is normal w.r.t. D and each \spad{s_i} is special
++ w.r.t D.
++ D is the derivation to use.
normalDenom: (RF, UP -> UP) -> UP
++ normalDenom(f, D) returns the product of all the normal factors
++ of \spad{denom(f)}.
++ D is the derivation to use.
decompose : (RF, UP -> UP) -> Record(poly:UP, normal:RF, special:RF)
++ decompose(f, D) returns \spad{[p,n,s]} such that \spad{f = p+n+s},
++ all the squarefree factors of \spad{denom(n)} are normal w.r.t. D,
++ \spad{denom(s)} is special w.r.t. D,
++ and n and s are proper fractions (no pole at infinity).
++ D is the derivation to use.
Implementation ==> add
normalDenom(f, derivation) == split(denom f, derivation).normal
split(p, derivation) ==
pbar := (gcd(p, derivation p) exquo gcd(p, differentiate p))::UP
zero? degree pbar => [p, 1]
rec := split((p exquo pbar)::UP, derivation)
[rec.normal, pbar * rec.special]
splitSquarefree(p, derivation) ==
s:Factored(UP) := 1
n := s
q := squareFree p
for rec in factors q repeat
r := rec.factor
g := gcd(r, derivation r)
if not ground? g then s := s * sqfrFactor(g, rec.exponent)
h := (r exquo g)::UP
if not ground? h then n := n * sqfrFactor(h, rec.exponent)
[n, unit(q) * s]
decompose(f, derivation) ==
qr := divide(numer f, denom f)
-- rec.normal * rec.special = denom f
rec := split(denom f, derivation)
-- eeu.coef1 * rec.normal + eeu.coef2 * rec.special = qr.remainder
-- and degree(eeu.coef1) < degree(rec.special)
-- and degree(eeu.coef2) < degree(rec.normal)
-- qr.remainder/denom(f) = eeu.coef1 / rec.special + eeu.coef2 / rec.normal
eeu := extendedEuclidean(rec.normal, rec.special,
qr.remainder)::Record(coef1:UP, coef2:UP)
[qr.quotient, eeu.coef2 / rec.normal, eeu.coef1 / rec.special]
@
\section{package INTHERTR TranscendentalHermiteIntegration}
<<package INTHERTR TranscendentalHermiteIntegration>>=
)abbrev package INTHERTR TranscendentalHermiteIntegration
++ Hermite integration, transcendental case
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 12 August 1992
++ Description: Hermite integration, transcendental case.
TranscendentalHermiteIntegration(F, UP): Exports == Implementation where
F : Field
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
RF ==> Fraction UP
REC ==> Record(answer:RF, lognum:UP, logden:UP)
HER ==> Record(answer:RF, logpart:RF, specpart:RF, polypart:UP)
Exports ==> with
HermiteIntegrate: (RF, UP -> UP) -> HER
++ HermiteIntegrate(f, D) returns \spad{[g, h, s, p]}
++ such that \spad{f = Dg + h + s + p},
++ h has a squarefree denominator normal w.r.t. D,
++ and all the squarefree factors of the denominator of s are
++ special w.r.t. D. Furthermore, h and s have no polynomial parts.
++ D is the derivation to use on \spadtype{UP}.
Implementation ==> add
import MonomialExtensionTools(F, UP)
normalHermiteIntegrate: (RF,UP->UP) -> Record(answer:RF,lognum:UP,logden:UP)
HermiteIntegrate(f, derivation) ==
rec := decompose(f, derivation)
hi := normalHermiteIntegrate(rec.normal, derivation)
qr := divide(hi.lognum, hi.logden)
[hi.answer, qr.remainder / hi.logden, rec.special, qr.quotient + rec.poly]
-- Hermite Reduction on f, every squarefree factor of denom(f) is normal wrt D
-- this is really a "parallel" Hermite reduction, in the sense that
-- every multiple factor of the denominator gets reduced at each pass
-- so if the denominator is P1 P2**2 ... Pn**n, this requires O(n)
-- reduction steps instead of O(n**2), like Mack's algorithm
-- (D.Mack, On Rational Integration, Univ. of Utah C.S. Tech.Rep. UCP-38,1975)
-- returns [g, b, d] s.t. f = g' + b/d and d is squarefree and normal wrt D
normalHermiteIntegrate(f, derivation) ==
a := numer f
q := denom f
p:UP := 0
mult:UP := 1
qhat := (q exquo (g0 := g := gcd(q, differentiate q)))::UP
while(degree(qbar := g) > 0) repeat
qbarhat := (qbar exquo (g := gcd(qbar, differentiate qbar)))::UP
qtil:= - ((qhat * (derivation qbar)) exquo qbar)::UP
bc :=
extendedEuclidean(qtil, qbarhat, a)::Record(coef1:UP, coef2:UP)
qr := divide(bc.coef1, qbarhat)
a := bc.coef2 + qtil * qr.quotient - derivation(qr.remainder)
* (qhat exquo qbarhat)::UP
p := p + mult * qr.remainder
mult:= mult * qbarhat
[p / g0, a, qhat]
@
\section{package INTTR TranscendentalIntegration}
<<package INTTR TranscendentalIntegration>>=
)abbrev package INTTR TranscendentalIntegration
++ Risch algorithm, transcendental case
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 24 October 1995
++ Description:
++ This package provides functions for the transcendental
++ case of the Risch algorithm.
-- Internally used by the integrator
TranscendentalIntegration(F, UP): Exports == Implementation where
F : Field
UP : UnivariatePolynomialCategory F
N ==> NonNegativeInteger
Z ==> Integer
Q ==> Fraction Z
GP ==> LaurentPolynomial(F, UP)
UP2 ==> SparseUnivariatePolynomial UP
RF ==> Fraction UP
UPR ==> SparseUnivariatePolynomial RF
IR ==> IntegrationResult RF
LOG ==> Record(scalar:Q, coeff:UPR, logand:UPR)
LLG ==> List Record(coeff:RF, logand:RF)
NE ==> Record(integrand:RF, intvar:RF)
NL ==> Record(mainpart:RF, limitedlogs:LLG)
UPF ==> Record(answer:UP, a0:F)
RFF ==> Record(answer:RF, a0:F)
IRF ==> Record(answer:IR, a0:F)
NLF ==> Record(answer:NL, a0:F)
GPF ==> Record(answer:GP, a0:F)
UPUP==> Record(elem:UP, notelem:UP)
GPGP==> Record(elem:GP, notelem:GP)
RFRF==> Record(elem:RF, notelem:RF)
FF ==> Record(ratpart:F, coeff:F)
FFR ==> Record(ratpart:RF, coeff:RF)
UF ==> Union(FF, "failed")
UF2 ==> Union(List F, "failed")
REC ==> Record(ir:IR, specpart:RF, polypart:UP)
PSOL==> Record(ans:F, right:F, sol?:Boolean)
FAIL==> error "Sorry - cannot handle that integrand yet"
Exports ==> with
primintegrate : (RF, UP -> UP, F -> UF) -> IRF
++ primintegrate(f, ', foo) returns \spad{[g, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in UP.
++ Argument foo is an extended integration function on F.
expintegrate : (RF, UP -> UP, (Z, F) -> PSOL) -> IRF
++ expintegrate(f, ', foo) returns \spad{[g, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F;
++ Argument foo is a Risch differential equation solver on F;
tanintegrate : (RF, UP -> UP, (Z, F, F) -> UF2) -> IRF
++ tanintegrate(f, ', foo) returns \spad{[g, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F;
++ Argument foo is a Risch differential system solver on F;
primextendedint:(RF, UP -> UP, F->UF, RF) -> Union(RFF,FFR,"failed")
++ primextendedint(f, ', foo, g) returns either \spad{[v, c]} such that
++ \spad{f = v' + c g} and \spad{c' = 0}, or \spad{[v, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in UP.
++ Returns "failed" if neither case can hold.
++ Argument foo is an extended integration function on F.
expextendedint:(RF,UP->UP,(Z,F)->PSOL, RF) -> Union(RFF,FFR,"failed")
++ expextendedint(f, ', foo, g) returns either \spad{[v, c]} such that
++ \spad{f = v' + c g} and \spad{c' = 0}, or \spad{[v, a]} such that
++ \spad{f = g' + a}, and \spad{a = 0} or \spad{a} has no integral in F.
++ Returns "failed" if neither case can hold.
++ Argument foo is a Risch differential equation function on F.
primlimitedint:(RF, UP -> UP, F->UF, List RF) -> Union(NLF,"failed")
++ primlimitedint(f, ', foo, [u1,...,un]) returns
++ \spad{[v, [c1,...,cn], a]} such that \spad{ci' = 0},
++ \spad{f = v' + a + reduce(+,[ci * ui'/ui])},
++ and \spad{a = 0} or \spad{a} has no integral in UP.
++ Returns "failed" if no such v, ci, a exist.
++ Argument foo is an extended integration function on F.
explimitedint:(RF, UP->UP,(Z,F)->PSOL,List RF) -> Union(NLF,"failed")
++ explimitedint(f, ', foo, [u1,...,un]) returns
++ \spad{[v, [c1,...,cn], a]} such that \spad{ci' = 0},
++ \spad{f = v' + a + reduce(+,[ci * ui'/ui])},
++ and \spad{a = 0} or \spad{a} has no integral in F.
++ Returns "failed" if no such v, ci, a exist.
++ Argument foo is a Risch differential equation function on F.
primextintfrac : (RF, UP -> UP, RF) -> Union(FFR, "failed")
++ primextintfrac(f, ', g) returns \spad{[v, c]} such that
++ \spad{f = v' + c g} and \spad{c' = 0}.
++ Error: if \spad{degree numer f >= degree denom f} or
++ if \spad{degree numer g >= degree denom g} or
++ if \spad{denom g} is not squarefree.
primlimintfrac : (RF, UP -> UP, List RF) -> Union(NL, "failed")
++ primlimintfrac(f, ', [u1,...,un]) returns \spad{[v, [c1,...,cn]]}
++ such that \spad{ci' = 0} and \spad{f = v' + +/[ci * ui'/ui]}.
++ Error: if \spad{degree numer f >= degree denom f}.
primintfldpoly : (UP, F -> UF, F) -> Union(UP, "failed")
++ primintfldpoly(p, ', t') returns q such that \spad{p' = q} or
++ "failed" if no such q exists. Argument \spad{t'} is the derivative of
++ the primitive generating the extension.
expintfldpoly : (GP, (Z, F) -> PSOL) -> Union(GP, "failed")
++ expintfldpoly(p, foo) returns q such that \spad{p' = q} or
++ "failed" if no such q exists.
++ Argument foo is a Risch differential equation function on F.
monomialIntegrate : (RF, UP -> UP) -> REC
++ monomialIntegrate(f, ') returns \spad{[ir, s, p]} such that
++ \spad{f = ir' + s + p} and all the squarefree factors of the
++ denominator of s are special w.r.t the derivation '.
monomialIntPoly : (UP, UP -> UP) -> Record(answer:UP, polypart:UP)
++ monomialIntPoly(p, ') returns [q, r] such that
++ \spad{p = q' + r} and \spad{degree(r) < degree(t')}.
++ Error if \spad{degree(t') < 2}.
Implementation ==> add
import SubResultantPackage(UP, UP2)
import MonomialExtensionTools(F, UP)
import TranscendentalHermiteIntegration(F, UP)
import CommuteUnivariatePolynomialCategory(F, UP, UP2)
primintegratepoly : (UP, F -> UF, F) -> Union(UPF, UPUP)
expintegratepoly : (GP, (Z, F) -> PSOL) -> Union(GPF, GPGP)
expextintfrac : (RF, UP -> UP, RF) -> Union(FFR, "failed")
explimintfrac : (RF, UP -> UP, List RF) -> Union(NL, "failed")
limitedLogs : (RF, RF -> RF, List RF) -> Union(LLG, "failed")
logprmderiv : (RF, UP -> UP) -> RF
logexpderiv : (RF, UP -> UP, F) -> RF
tanintegratespecial: (RF, RF -> RF, (Z, F, F) -> UF2) -> Union(RFF, RFRF)
UP2UP2 : UP -> UP2
UP2UPR : UP -> UPR
UP22UPR : UP2 -> UPR
notelementary : REC -> IR
kappa : (UP, UP -> UP) -> UP
dummy:RF := 0
logprmderiv(f, derivation) == differentiate(f, derivation) / f
UP2UP2 p ==
map(#1::UP, p)$UnivariatePolynomialCategoryFunctions2(F, UP, UP, UP2)
UP2UPR p ==
map(#1::UP::RF, p)$UnivariatePolynomialCategoryFunctions2(F, UP, RF, UPR)
UP22UPR p == map(#1::RF, p)$SparseUnivariatePolynomialFunctions2(UP, RF)
-- given p in k[z] and a derivation on k[t] returns the coefficient lifting
-- in k[z] of the restriction of D to k.
kappa(p, derivation) ==
ans:UP := 0
while p ~= 0 repeat
ans := ans + derivation(leadingCoefficient(p)::UP)*monomial(1,degree p)
p := reductum p
ans
-- works in any monomial extension
monomialIntegrate(f, derivation) ==
zero? f => [0, 0, 0]
r := HermiteIntegrate(f, derivation)
zero?(inum := numer(r.logpart)) => [r.answer::IR, r.specpart, r.polypart]
iden := denom(r.logpart)
x := monomial(1, 1)$UP
resultvec := subresultantVector(UP2UP2 inum -
(x::UP2) * UP2UP2 derivation iden, UP2UP2 iden)
respoly := primitivePart leadingCoefficient resultvec 0
rec := splitSquarefree(respoly, kappa(#1, derivation))
logs:List(LOG) := [
[1, UP2UPR(term.factor),
UP22UPR swap primitivePart(resultvec(term.exponent),term.factor)]
for term in factors(rec.special)]
dlog :=
one? derivation x => r.logpart
differentiate(mkAnswer(0, logs, empty()),
differentiate(#1, derivation))
(u := retractIfCan(p := r.logpart - dlog)@Union(UP, "failed")) case UP =>
[mkAnswer(r.answer, logs, empty), r.specpart, r.polypart + u::UP]
[mkAnswer(r.answer, logs, [[p, dummy]]), r.specpart, r.polypart]
-- returns [q, r] such that p = q' + r and degree(r) < degree(dt)
-- must have degree(derivation t) >= 2
monomialIntPoly(p, derivation) ==
(d := degree(dt := derivation monomial(1,1))::Z) < 2 =>
error "monomIntPoly: monomial must have degree 2 or more"
l := leadingCoefficient dt
ans:UP := 0
while (n := 1 + degree(p)::Z - d) > 0 repeat
ans := ans + (term := monomial(leadingCoefficient(p) / (n * l), n::N))
p := p - derivation term -- degree(p) must drop here
[ans, p]
-- returns either
-- (q in GP, a in F) st p = q' + a, and a=0 or a has no integral in F
-- or (q in GP, r in GP) st p = q' + r, and r has no integral elem/UP
expintegratepoly(p, FRDE) ==
coef0:F := 0
notelm := answr := 0$GP
while p ~= 0 repeat
ans1 := FRDE(n := degree p, a := leadingCoefficient p)
answr := answr + monomial(ans1.ans, n)
if ~ans1.sol? then -- Risch d.e. has no complete solution
missing := a - ans1.right
if zero? n then coef0 := missing
else notelm := notelm + monomial(missing, n)
p := reductum p
zero? notelm => [answr, coef0]
[answr, notelm]
-- f is either 0 or of the form p(t)/(1 + t**2)**n
-- returns either
-- (q in RF, a in F) st f = q' + a, and a=0 or a has no integral in F
-- or (q in RF, r in RF) st f = q' + r, and r has no integral elem/UP
tanintegratespecial(f, derivation, FRDE) ==
ans:RF := 0
p := monomial(1, 2)$UP + 1
while (n := degree(denom f) quo 2) ~= 0 repeat
r := numer(f) rem p
a := coefficient(r, 1)
b := coefficient(r, 0)
(u := FRDE(n, a, b)) case "failed" => return [ans, f]
l := u::List(F)
term:RF := (monomial(first l, 1)$UP + second(l)::UP) / denom f
ans := ans + term
f := f - derivation term -- the order of the pole at 1+t^2 drops
zero?(c0 := retract(retract(f)@UP)@F) or
(u := FRDE(0, c0, 0)) case "failed" => [ans, c0]
[ans + first(u::List(F))::UP::RF, 0::F]
-- returns (v in RF, c in RF) s.t. f = v' + cg, and c' = 0, or "failed"
-- g must have a squarefree denominator (always possible)
-- g must have no polynomial part and no pole above t = 0
-- f must have no polynomial part and no pole above t = 0
expextintfrac(f, derivation, g) ==
zero? f => [0, 0]
degree numer f >= degree denom f => error "Not a proper fraction"
order(denom f,monomial(1,1)) ~= 0 => error "Not integral at t = 0"
r := HermiteIntegrate(f, derivation)
zero? g =>
r.logpart ~= 0 => "failed"
[r.answer, 0]
degree numer g >= degree denom g => error "Not a proper fraction"
order(denom g,monomial(1,1)) ~= 0 => error "Not integral at t = 0"
differentiate(c := r.logpart / g, derivation) ~= 0 => "failed"
[r.answer, c]
limitedLogs(f, logderiv, lu) ==
zero? f => empty()
empty? lu => "failed"
empty? rest lu =>
logderiv(c0 := f / logderiv(u0 := first lu)) ~= 0 => "failed"
[[c0, u0]]
num := numer f
den := denom f
l1:List Record(logand2:RF, contrib:UP) :=
[[u, numer v] for u in lu | one? denom(v := den * logderiv u)]
rows := max(degree den,
1 + reduce(max, [degree(u.contrib) for u in l1], 0)$List(N))
m:Matrix(F) := zero(rows, cols := 1 + #l1)
for i in 0..rows-1 repeat
for pp in l1 for j in minColIndex m .. maxColIndex m - 1 repeat
qsetelt!(m, i + minRowIndex m, j, coefficient(pp.contrib, i))
qsetelt!(m,i+minRowIndex m, maxColIndex m, coefficient(num, i))
m := rowEchelon m
ans := empty()$LLG
for i in minRowIndex m .. maxRowIndex m |
qelt(m, i, maxColIndex m) ~= 0 repeat
OK := false
for pp in l1 for j in minColIndex m .. maxColIndex m - 1
while not OK repeat
if qelt(m, i, j) ~= 0 then
OK := true
c := qelt(m, i, maxColIndex m) / qelt(m, i, j)
logderiv(c0 := c::UP::RF) ~= 0 => return "failed"
ans := concat([c0, pp.logand2], ans)
not OK => return "failed"
ans
-- returns q in UP s.t. p = q', or "failed"
primintfldpoly(p, extendedint, t') ==
(u := primintegratepoly(p, extendedint, t')) case UPUP => "failed"
u.a0 ~= 0 => "failed"
u.answer
-- returns q in GP st p = q', or "failed"
expintfldpoly(p, FRDE) ==
(u := expintegratepoly(p, FRDE)) case GPGP => "failed"
u.a0 ~= 0 => "failed"
u.answer
-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
-- and f = v' + a + +/[ci * ui'/ui]
-- and a = 0 or a has no integral in UP
primlimitedint(f, derivation, extendedint, lu) ==
qr := divide(numer f, denom f)
(u1 := primlimintfrac(qr.remainder / (denom f), derivation, lu))
case "failed" => "failed"
(u2 := primintegratepoly(qr.quotient, extendedint,
retract derivation monomial(1, 1))) case UPUP => "failed"
[[u1.mainpart + u2.answer::RF, u1.limitedlogs], u2.a0]
-- returns (v in RF, c1...cn in RF, a in F) s.t. ci' = 0,
-- and f = v' + a + +/[ci * ui'/ui]
-- and a = 0 or a has no integral in F
explimitedint(f, derivation, FRDE, lu) ==
qr := separate(f)$GP
(u1 := explimintfrac(qr.fracPart,derivation, lu)) case "failed" =>
"failed"
(u2 := expintegratepoly(qr.polyPart, FRDE)) case GPGP => "failed"
[[u1.mainpart + convert(u2.answer)@RF, u1.limitedlogs], u2.a0]
-- returns [v, c1...cn] s.t. f = v' + +/[ci * ui'/ui]
-- f must have no polynomial part (degree numer f < degree denom f)
primlimintfrac(f, derivation, lu) ==
zero? f => [0, empty()]
degree numer f >= degree denom f => error "Not a proper fraction"
r := HermiteIntegrate(f, derivation)
zero?(r.logpart) => [r.answer, empty()]
(u := limitedLogs(r.logpart, logprmderiv(#1, derivation), lu))
case "failed" => "failed"
[r.answer, u::LLG]
-- returns [v, c1...cn] s.t. f = v' + +/[ci * ui'/ui]
-- f must have no polynomial part (degree numer f < degree denom f)
-- f must be integral above t = 0
explimintfrac(f, derivation, lu) ==
zero? f => [0, empty()]
degree numer f >= degree denom f => error "Not a proper fraction"
order(denom f, monomial(1,1)) > 0 => error "Not integral at t = 0"
r := HermiteIntegrate(f, derivation)
zero?(r.logpart) => [r.answer, empty()]
eta' := coefficient(derivation monomial(1, 1), 1)
(u := limitedLogs(r.logpart, logexpderiv(#1,derivation,eta'), lu))
case "failed" => "failed"
[r.answer - eta'::UP *
+/[((degree numer(v.logand))::Z - (degree denom(v.logand))::Z) *
v.coeff for v in u], u::LLG]
logexpderiv(f, derivation, eta') ==
(differentiate(f, derivation) / f) -
(((degree numer f)::Z - (degree denom f)::Z) * eta')::UP::RF
notelementary rec ==
rec.ir + integral(rec.polypart::RF + rec.specpart, monomial(1,1)$UP :: RF)
-- returns
-- (g in IR, a in F) st f = g'+ a, and a=0 or a has no integral in UP
primintegrate(f, derivation, extendedint) ==
rec := monomialIntegrate(f, derivation)
not elem?(i1 := rec.ir) => [notelementary rec, 0]
(u2 := primintegratepoly(rec.polypart, extendedint,
retract derivation monomial(1, 1))) case UPUP =>
[i1 + u2.elem::RF::IR
+ integral(u2.notelem::RF, monomial(1,1)$UP :: RF), 0]
[i1 + u2.answer::RF::IR, u2.a0]
-- returns
-- (g in IR, a in F) st f = g' + a, and a = 0 or a has no integral in F
expintegrate(f, derivation, FRDE) ==
rec := monomialIntegrate(f, derivation)
not elem?(i1 := rec.ir) => [notelementary rec, 0]
-- rec.specpart is either 0 or of the form p(t)/t**n
special := rec.polypart::GP +
(numer(rec.specpart)::GP exquo denom(rec.specpart)::GP)::GP
(u2 := expintegratepoly(special, FRDE)) case GPGP =>
[i1 + convert(u2.elem)@RF::IR + integral(convert(u2.notelem)@RF,
monomial(1,1)$UP :: RF), 0]
[i1 + convert(u2.answer)@RF::IR, u2.a0]
-- returns
-- (g in IR, a in F) st f = g' + a, and a = 0 or a has no integral in F
tanintegrate(f, derivation, FRDE) ==
rec := monomialIntegrate(f, derivation)
not elem?(i1 := rec.ir) => [notelementary rec, 0]
r := monomialIntPoly(rec.polypart, derivation)
t := monomial(1, 1)$UP
c := coefficient(r.polypart, 1) / leadingCoefficient(derivation t)
derivation(c::UP) ~= 0 =>
[i1 + mkAnswer(r.answer::RF, empty(),
[[r.polypart::RF + rec.specpart, dummy]$NE]), 0]
logs:List(LOG) :=
zero? c => empty()
[[1, monomial(1,1)$UPR - (c/(2::F))::UP::RF::UPR, (1 + t**2)::RF::UPR]]
c0 := coefficient(r.polypart, 0)
(u := tanintegratespecial(rec.specpart, differentiate(#1, derivation),
FRDE)) case RFRF =>
[i1 + mkAnswer(r.answer::RF + u.elem, logs, [[u.notelem,dummy]$NE]), c0]
[i1 + mkAnswer(r.answer::RF + u.answer, logs, empty()), u.a0 + c0]
-- returns either (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- or (v in RF, a in F) s.t. f = v' + a
-- and a = 0 or a has no integral in UP
primextendedint(f, derivation, extendedint, g) ==
fqr := divide(numer f, denom f)
gqr := divide(numer g, denom g)
(u1 := primextintfrac(fqr.remainder / (denom f), derivation,
gqr.remainder / (denom g))) case "failed" => "failed"
zero?(gqr.remainder) =>
-- the following FAIL cannot occur if the primitives are all logs
degree(gqr.quotient) > 0 => FAIL
(u3 := primintegratepoly(fqr.quotient, extendedint,
retract derivation monomial(1, 1))) case UPUP => "failed"
[u1.ratpart + u3.answer::RF, u3.a0]
(u2 := primintfldpoly(fqr.quotient - retract(u1.coeff)@UP *
gqr.quotient, extendedint, retract derivation monomial(1, 1)))
case "failed" => "failed"
[u2::UP::RF + u1.ratpart, u1.coeff]
-- returns either (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- or (v in RF, a in F) s.t. f = v' + a
-- and a = 0 or a has no integral in F
expextendedint(f, derivation, FRDE, g) ==
qf := separate(f)$GP
qg := separate g
(u1 := expextintfrac(qf.fracPart, derivation, qg.fracPart))
case "failed" => "failed"
zero?(qg.fracPart) =>
--the following FAIL's cannot occur if the primitives are all logs
retractIfCan(qg.polyPart)@Union(F,"failed") case "failed"=> FAIL
(u3 := expintegratepoly(qf.polyPart,FRDE)) case GPGP => "failed"
[u1.ratpart + convert(u3.answer)@RF, u3.a0]
(u2 := expintfldpoly(qf.polyPart - retract(u1.coeff)@UP :: GP
* qg.polyPart, FRDE)) case "failed" => "failed"
[convert(u2::GP)@RF + u1.ratpart, u1.coeff]
-- returns either
-- (q in UP, a in F) st p = q'+ a, and a=0 or a has no integral in UP
-- or (q in UP, r in UP) st p = q'+ r, and r has no integral elem/UP
primintegratepoly(p, extendedint, t') ==
zero? p => [0, 0$F]
ans:UP := 0
while (d := degree p) > 0 repeat
(ans1 := extendedint leadingCoefficient p) case "failed" =>
return([ans, p])
p := reductum p - monomial(d * t' * ans1.ratpart, (d - 1)::N)
ans := ans + monomial(ans1.ratpart, d)
+ monomial(ans1.coeff / (d + 1)::F, d + 1)
(ans1:= extendedint(rp := retract(p)@F)) case "failed" => [ans,rp]
[monomial(ans1.coeff, 1) + ans1.ratpart::UP + ans, 0$F]
-- returns (v in RF, c in RF) s.t. f = v' + cg, and c' = 0
-- g must have a squarefree denominator (always possible)
-- g must have no polynomial part (degree numer g < degree denom g)
-- f must have no polynomial part (degree numer f < degree denom f)
primextintfrac(f, derivation, g) ==
zero? f => [0, 0]
degree numer f >= degree denom f => error "Not a proper fraction"
r := HermiteIntegrate(f, derivation)
zero? g =>
r.logpart ~= 0 => "failed"
[r.answer, 0]
degree numer g >= degree denom g => error "Not a proper fraction"
differentiate(c := r.logpart / g, derivation) ~= 0 => "failed"
[r.answer, c]
@
\section{package INTRAT RationalIntegration}
<<package INTRAT RationalIntegration>>=
)abbrev package INTRAT RationalIntegration
++ Rational function integration
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 24 October 1995
++ Description:
++ This package provides functions for the base
++ case of the Risch algorithm.
-- Used internally bt the integration packages
RationalIntegration(F, UP): Exports == Implementation where
F : Join(Field, CharacteristicZero, RetractableTo Integer)
UP: UnivariatePolynomialCategory F
RF ==> Fraction UP
IR ==> IntegrationResult RF
LLG ==> List Record(coeff:RF, logand:RF)
URF ==> Union(Record(ratpart:RF, coeff:RF), "failed")
U ==> Union(Record(mainpart:RF, limitedlogs:LLG), "failed")
Exports ==> with
integrate : RF -> IR
++ integrate(f) returns g such that \spad{g' = f}.
infieldint : RF -> Union(RF, "failed")
++ infieldint(f) returns g such that \spad{g' = f} or "failed"
++ if the integral of f is not a rational function.
extendedint: (RF, RF) -> URF
++ extendedint(f, g) returns fractions \spad{[h, c]} such that
++ \spad{c' = 0} and \spad{h' = f - cg},
++ if \spad{(h, c)} exist, "failed" otherwise.
limitedint : (RF, List RF) -> U
++ \spad{limitedint(f, [g1,...,gn])} returns
++ fractions \spad{[h,[[ci, gi]]]}
++ such that the gi's are among \spad{[g1,...,gn]}, \spad{ci' = 0}, and
++ \spad{(h+sum(ci log(gi)))' = f}, if possible, "failed" otherwise.
Implementation ==> add
import TranscendentalIntegration(F, UP)
infieldint f ==
rec := baseRDE(0, f)$TranscendentalRischDE(F, UP)
rec.nosol => "failed"
rec.ans
integrate f ==
rec := monomialIntegrate(f, differentiate)
integrate(rec.polypart)::RF::IR + rec.ir
limitedint(f, lu) ==
quorem := divide(numer f, denom f)
(u := primlimintfrac(quorem.remainder / (denom f), differentiate,
lu)) case "failed" => "failed"
[u.mainpart + integrate(quorem.quotient)::RF, u.limitedlogs]
extendedint(f, g) ==
fqr := divide(numer f, denom f)
gqr := divide(numer g, denom g)
(i1 := primextintfrac(fqr.remainder / (denom f), differentiate,
gqr.remainder / (denom g))) case "failed" => "failed"
i2:=integrate(fqr.quotient-retract(i1.coeff)@UP *gqr.quotient)::RF
[i2 + i1.ratpart, i1.coeff]
@
\section{package INTRF RationalFunctionIntegration}
<<package INTRF RationalFunctionIntegration>>=
)abbrev package INTRF RationalFunctionIntegration
++ Integration of rational functions
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 29 Mar 1990
++ Keywords: polynomial, fraction, integration.
++ Description:
++ This package provides functions for the integration
++ of rational functions.
++ Examples: )r INTRF INPUT
RationalFunctionIntegration(F): Exports == Implementation where
F: Join(IntegralDomain, RetractableTo Integer, CharacteristicZero)
SE ==> Symbol
P ==> Polynomial F
Q ==> Fraction P
UP ==> SparseUnivariatePolynomial Q
QF ==> Fraction UP
LGQ ==> List Record(coeff:Q, logand:Q)
UQ ==> Union(Record(ratpart:Q, coeff:Q), "failed")
ULQ ==> Union(Record(mainpart:Q, limitedlogs:LGQ), "failed")
Exports ==> with
internalIntegrate: (Q, SE) -> IntegrationResult Q
++ internalIntegrate(f, x) returns g such that \spad{dg/dx = f}.
infieldIntegrate : (Q, SE) -> Union(Q, "failed")
++ infieldIntegrate(f, x) returns a fraction
++ g such that \spad{dg/dx = f}
++ if g exists, "failed" otherwise.
limitedIntegrate : (Q, SE, List Q) -> ULQ
++ \spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions
++ \spad{[h, [[ci,gi]]]} such that the gi's are among
++ \spad{[g1,...,gn]},
++ \spad{dci/dx = 0}, and \spad{d(h + sum(ci log(gi)))/dx = f}
++ if possible, "failed" otherwise.
extendedIntegrate: (Q, SE, Q) -> UQ
++ extendedIntegrate(f, x, g) returns fractions \spad{[h, c]} such that
++ \spad{dc/dx = 0} and \spad{dh/dx = f - cg}, if \spad{(h, c)} exist,
++ "failed" otherwise.
Implementation ==> add
import RationalIntegration(Q, UP)
import IntegrationResultFunctions2(QF, Q)
import PolynomialCategoryQuotientFunctions(IndexedExponents SE,
SE, F, P, Q)
infieldIntegrate(f, x) ==
map(multivariate(#1, x), infieldint univariate(f, x))
internalIntegrate(f, x) ==
map(multivariate(#1, x), integrate univariate(f, x))
extendedIntegrate(f, x, g) ==
map(multivariate(#1, x),
extendedint(univariate(f, x), univariate(g, x)))
limitedIntegrate(f, x, lu) ==
map(multivariate(#1, x),
limitedint(univariate(f, x), [univariate(u, x) for u in lu]))
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- SPAD files for the integration world should be compiled in the
-- following order:
--
-- intaux rderf INTRF curve curvepkg divisor pfo
-- intalg intaf efstruc rdeef intpm intef irexpand integrat
<<package SUBRESP SubResultantPackage>>
<<package MONOTOOL MonomialExtensionTools>>
<<package INTHERTR TranscendentalHermiteIntegration>>
<<package INTTR TranscendentalIntegration>>
<<package INTRAT RationalIntegration>>
<<package INTRF RationalFunctionIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|