1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra integer.spad}
\author{James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTSLPE IntegerSolveLinearPolynomialEquation}
<<package INTSLPE IntegerSolveLinearPolynomialEquation>>=
)abbrev package INTSLPE IntegerSolveLinearPolynomialEquation
++ Author: Davenport
++ Date Created: 1991
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides the implementation for the
++ \spadfun{solveLinearPolynomialEquation}
++ operation over the integers. It uses a lifting technique
++ from the package GenExEuclid
IntegerSolveLinearPolynomialEquation(): C ==T
where
ZP ==> SparseUnivariatePolynomial Integer
C == with
solveLinearPolynomialEquation: (List ZP,ZP) -> Union(List ZP,"failed")
++ solveLinearPolynomialEquation([f1, ..., fn], g)
++ (where the fi are relatively prime to each other)
++ returns a list of ai such that
++ \spad{g/prod fi = sum ai/fi}
++ or returns "failed" if no such list of ai's exists.
T == add
oldlp:List ZP := []
slpePrime:Integer:=(2::Integer)
oldtable:Vector List ZP := empty()
solveLinearPolynomialEquation(lp,p) ==
if (oldlp ~= lp) then
-- we have to generate a new table
deg:= +/[degree u for u in lp]
ans:Union(Vector List ZP,"failed"):="failed"
slpePrime:=2147483647::Integer -- 2**31 -1 : a prime
-- a good test case for this package is
-- ([x**31-1,x-2],2)
while (ans case "failed") repeat
ans:=tablePow(deg,slpePrime,lp)$GenExEuclid(Integer,ZP)
if (ans case "failed") then
slpePrime:= prevPrime(slpePrime)$IntegerPrimesPackage(Integer)
oldtable:=(ans:: Vector List ZP)
answer:=solveid(p,slpePrime,oldtable)
answer
@
\section{domain INT Integer}
<<domain INT Integer>>=
)abbrev domain INT Integer
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ Related Constructors:
++ Keywords: integer
++ Description: \spadtype{Integer} provides the domain of arbitrary precision
++ integers.
Integer: IntegerNumberSystem with
canonical
++ mathematical equality is data structure equality.
== add
macro ZP == SparseUnivariatePolynomial %
macro ZZP == SparseUnivariatePolynomial Integer
macro NNI == NonNegativeInteger
import %icst0: % from Foreign Builtin
import %icst1: % from Foreign Builtin
import %ineg: % -> % from Foreign Builtin
import %iabs: % -> % from Foreign Builtin
import %iinc: % -> % from Foreign Builtin
import %idec: % -> % from Foreign Builtin
import %irandom: % -> % from Foreign Builtin
import %iodd?: % -> Boolean from Foreign Builtin
import %ieven?: % -> Boolean from Foreign Builtin
import %hash: % -> SingleInteger from Foreign Builtin
import %iadd: (%,%) -> % from Foreign Builtin
import %iaddmod: (%,%,%) -> % from Foreign Builtin
import %isub: (%,%) -> % from Foreign Builtin
import %isubmod: (%,%,%) -> % from Foreign Builtin
import %imul: (%,%) -> % from Foreign Builtin
import %imulmod: (%,%,%) -> % from Foreign Builtin
import %irem: (%,%) -> % from Foreign Builtin
import %iquo: (%,%) -> % from Foreign Builtin
import %ilshift: (%,%) -> % from Foreign Builtin
import %imax: (%,%) -> % from Foreign Builtin
import %imin: (%,%) -> % from Foreign Builtin
import %igcd: (%,%) -> % from Foreign Builtin
import %ieq: (%,%) -> Boolean from Foreign Builtin
import %ilt: (%,%) -> Boolean from Foreign Builtin
import %ile: (%,%) -> Boolean from Foreign Builtin
import %igt: (%,%) -> Boolean from Foreign Builtin
import %ige: (%,%) -> Boolean from Foreign Builtin
import %ilength: % -> % from Foreign Builtin
import %ibigrandom: () -> % from Foreign Builtin
import %i2s: % -> String from Foreign Builtin
import %strconc: (String,String) -> String from Foreign Builtin
0 == %icst0
1 == %icst1
zero? x == x = 0$%
one? x == x = 1$%
base() == 2 pretend %
copy x == x
inc x == %iinc x
dec x == %idec x
hash x == %hash x
negative? x == x < 0$%
positive? x == 0$% < x
coerce(x):OutputForm == outputForm(x pretend Integer)
coerce(m:Integer):% == m pretend %
convert(x:%):Integer == x pretend Integer
length a == %ilength a
addmod(a, b, p) == %iaddmod(a,b,p)
submod(a, b, p) == %isubmod(a,b,p)
mulmod(a, b, p) == %imulmod(a,b,p)
convert(x:%):Float == coerce(x)$Float
convert(x:%):DoubleFloat == coerce(x)$DoubleFloat
convert(x:%):InputForm == convert(x)$InputForm
latex(x:%):String ==
s := %i2s x
-1$% < x and x < 10 => s
%strconc("{", %strconc(s, "}"))
positiveRemainder(a, b) ==
negative?(r := a rem b) =>
negative? b => r - b
r + b
r
reducedSystem(m:Matrix %):Matrix(Integer) ==
m pretend Matrix(Integer)
reducedSystem(m:Matrix %, v:Vector %):
Record(mat:Matrix(Integer), vec:Vector(Integer)) ==
[m pretend Matrix(Integer), v pretend Vector(Integer)]
abs(x) == %iabs x
random() == %ibigrandom()
random(x) == %irandom x
x = y == %ieq(x,y)
x < y == %ilt(x,y)
x > y == %igt(x,y)
x <= y == %ile(x,y)
x >= y == %ige(x,y)
- x == %ineg x
x + y == %iadd(x,y)
x - y == %isub(x,y)
x:% * y:% == %imul(x,y)
(m:Integer) * (y:%) == %imul(m,y) -- for subsumption problem
x:% ** n:NNI == %ipow(x,n)$Foreign(Builtin)
odd? x == %iodd? x
even? x == %ieven? x
max(x,y) == %imax(x,y)
min(x,y) == %imin(x,y)
divide(x,y) == %idivide(x,y)$Foreign(Builtin)
x quo y == %iquo(x,y)
x rem y == %irem(x,y)
shift(x, y) == %ilshift(x,y)
recip(x) == if one? x or x=-1$% then x else "failed"
gcd(x,y) == %igcd(x,y)
UCA ==> Record(unit:%,canonical:%,associate:%)
unitNormal x ==
negative? x => [-1$%,-x,-1$%]$UCA
[1$%,x,1$%]$UCA
unitCanonical x == abs x
solveLinearPolynomialEquation(lp:List ZP,p:ZP):Union(List ZP,"failed") ==
solveLinearPolynomialEquation(lp pretend List ZZP,
p pretend ZZP)$IntegerSolveLinearPolynomialEquation pretend
Union(List ZP,"failed")
squareFreePolynomial(p:ZP):Factored ZP ==
squareFree(p)$UnivariatePolynomialSquareFree(%,ZP)
factorPolynomial(p:ZP):Factored ZP ==
-- GaloisGroupFactorizer doesn't factor the content
-- so we have to do this by hand
pp:=primitivePart p
leadingCoefficient pp = leadingCoefficient p =>
factor(p)$GaloisGroupFactorizer(ZP)
mergeFactors(factor(pp)$GaloisGroupFactorizer(ZP),
map(#1::ZP,
factor((leadingCoefficient p exquo
leadingCoefficient pp)
::%))$FactoredFunctions2(%,ZP)
)$FactoredFunctionUtilities(ZP)
factorSquareFreePolynomial(p:ZP):Factored ZP ==
factorSquareFree(p)$GaloisGroupFactorizer(ZP)
gcdPolynomial(p:ZP, q:ZP):ZP ==
zero? p => unitCanonical q
zero? q => unitCanonical p
gcd([p,q])$HeuGcd(ZP)
opposite?(x,y) == x = -y
annihilate?(x,y) == zero? x or zero? y
-- myNextPrime: (%,NonNegativeInteger) -> %
-- myNextPrime(x,n) ==
-- nextPrime(x)$IntegerPrimesPackage(%)
-- TT:=InnerModularGcd(%,ZP,67108859 pretend %,myNextPrime)
-- gcdPolynomial(p,q) == modularGcd(p,q)$TT
@
\section{domain NNI NonNegativeInteger}
<<domain NNI NonNegativeInteger>>=
)abbrev domain NNI NonNegativeInteger
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ Related Constructors:
++ Keywords: integer
++ Description: \spadtype{NonNegativeInteger} provides functions for non
++ negative integers.
NonNegativeInteger: Join(OrderedAbelianMonoidSup,Monoid) with
quo : (%,%) -> %
++ a quo b returns the quotient of \spad{a} and b, forgetting
++ the remainder.
rem : (%,%) -> %
++ a rem b returns the remainder of \spad{a} and b.
gcd : (%,%) -> %
++ gcd(a,b) computes the greatest common divisor of two
++ non negative integers \spad{a} and b.
divide: (%,%) -> Record(quotient:%,remainder:%)
++ divide(a,b) returns a record containing both
++ remainder and quotient.
exquo: (%,%) -> Union(%,"failed")
++ exquo(a,b) returns the quotient of \spad{a} and b, or "failed"
++ if b is zero or \spad{a} rem b is zero.
shift: (%, Integer) -> %
++ shift(a,i) shift \spad{a} by i bits.
random : % -> %
++ random(n) returns a random integer from 0 to \spad{n-1}.
commutative("*")
++ commutative("*") means multiplication is commutative : \spad{x*y = y*x}.
== SubDomain(Integer,#1 >= 0) add
x,y:%
sup(x,y) == %imax(x,y)$Foreign(Builtin)
shift(x:%, n:Integer):% == ASH(x,n)$Lisp
subtractIfCan(x, y) ==
c:Integer := rep x - rep y
negative? c => "failed"
per c
@
\section{domain PI PositiveInteger}
<<domain PI PositiveInteger>>=
)abbrev domain PI PositiveInteger
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ Related Constructors:
++ Keywords: positive integer
++ Description: \spadtype{PositiveInteger} provides functions for
++ positive integers.
PositiveInteger: Join(OrderedAbelianSemiGroup,Monoid) with
gcd: (%,%) -> %
++ gcd(a,b) computes the greatest common divisor of two
++ positive integers \spad{a} and b.
commutative("*")
++ commutative("*") means multiplication is commutative : x*y = y*x
== SubDomain(NonNegativeInteger,#1 > 0)
@
\section{domain ROMAN RomanNumeral}
<<domain ROMAN RomanNumeral>>=
)abbrev domain ROMAN RomanNumeral
++ Author:
++ Date Created:
++ Change History:
++ Basic Operations:
++ convert, roman
++ Related Constructors:
++ Keywords: roman numerals
++ Description: \spadtype{RomanNumeral} provides functions for converting
++ integers to roman numerals.
RomanNumeral(): Join(IntegerNumberSystem,ConvertibleFrom Symbol) with
canonical
++ mathematical equality is data structure equality.
roman : Symbol -> %
++ roman(n) creates a roman numeral for symbol n.
roman : Integer -> %
++ roman(n) creates a roman numeral for n.
== Integer add
import NumberFormats()
roman(n:Integer) == n::%
roman(sy:Symbol) == convert sy
convert(sy:Symbol):% == ScanRoman(string sy)::%
coerce(r:%):OutputForm ==
n := convert(r)@Integer
-- okay, we stretch it
zero? n => n::OutputForm
negative? n => - ((-r)::OutputForm)
FormatRoman(n::PositiveInteger)::Symbol::OutputForm
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package INTSLPE IntegerSolveLinearPolynomialEquation>>
<<domain INT Integer>>
<<domain NNI NonNegativeInteger>>
<<domain PI PositiveInteger>>
<<domain ROMAN RomanNumeral>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|