1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra intaux.spad}
\author{Barry Trager, Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain IR IntegrationResult}
<<domain IR IntegrationResult>>=
)abbrev domain IR IntegrationResult
++ The result of a transcendental integration.
++ Author: Barry Trager, Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 12 August 1992
++ Description:
++ If a function f has an elementary integral g, then g can be written
++ in the form \spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)}
++ where h, which is in the same field than f, is called the rational
++ part of the integral, and \spad{c1 log(u1) + ... cn log(un)} is called the
++ logarithmic part of the integral. This domain manipulates integrals
++ represented in that form, by keeping both parts separately. The logs
++ are not explicitly computed.
++ Keywords: integration.
++ Examples: )r RATINT INPUT
IntegrationResult(F:Field): Exports == Implementation where
O ==> OutputForm
B ==> Boolean
Z ==> Integer
Q ==> Fraction Integer
SE ==> Symbol
UP ==> SparseUnivariatePolynomial F
LOG ==> Record(scalar:Q, coeff:UP, logand:UP)
NE ==> Record(integrand:F, intvar:F)
Exports ==> (Module Q, RetractableTo F) with
mkAnswer: (F, List LOG, List NE) -> %
++ mkAnswer(r,l,ne) creates an integration result from
++ a rational part r, a logarithmic part l, and a non-elementary part ne.
ratpart : % -> F
++ ratpart(ir) returns the rational part of an integration result
logpart : % -> List LOG
++ logpart(ir) returns the logarithmic part of an integration result
notelem : % -> List NE
++ notelem(ir) returns the non-elementary part of an integration result
elem? : % -> B
++ elem?(ir) tests if an integration result is elementary over F?
integral: (F, F) -> %
++ integral(f,x) returns the formal integral of f with respect to x
differentiate: (%, F -> F) -> F
++ differentiate(ir,D) differentiates ir with respect to the derivation D.
if F has PartialDifferentialRing(SE) then
differentiate: (%, Symbol) -> F
++ differentiate(ir,x) differentiates ir with respect to x
if F has RetractableTo Symbol then
integral: (F, Symbol) -> %
++ integral(f,x) returns the formal integral of f with respect to x
Implementation ==> add
Rep := Record(ratp: F, logp: List LOG, nelem: List NE)
timelog : (Q, LOG) -> LOG
timene : (Q, NE) -> NE
LOG2O : LOG -> O
NE2O : NE -> O
Q2F : Q -> F
nesimp : List NE -> List NE
neselect: (List NE, F) -> F
pLogDeriv: (LOG, F -> F) -> F
pNeDeriv : (NE, F -> F) -> F
alpha:O := new()$Symbol :: O
- u == (-1$Z) * u
0 == mkAnswer(0, empty(), empty())
coerce(x:F):% == mkAnswer(x, empty(), empty())
ratpart u == u.ratp
logpart u == u.logp
notelem u == u.nelem
elem? u == empty? notelem u
mkAnswer(x, l, n) == [x, l, nesimp n]
timelog(r, lg) == [r * lg.scalar, lg.coeff, lg.logand]
integral(f:F,x:F) == (zero? f => 0; mkAnswer(0, empty(), [[f, x]]))
timene(r, ne) == [Q2F(r) * ne.integrand, ne.intvar]
n:Z * u:% == (n::Q) * u
Q2F r == numer(r)::F / denom(r)::F
neselect(l, x) == +/[ne.integrand for ne in l | ne.intvar = x]
if F has RetractableTo Symbol then
integral(f:F, x:Symbol):% == integral(f, x::F)
LOG2O rec ==
one? degree rec.coeff =>
-- deg 1 minimal poly doesn't get sigma
lastc := - coefficient(rec.coeff, 0) / coefficient(rec.coeff, 1)
lg := (rec.logand) lastc
logandp := prefix('log::O, [lg::O])
(cc := Q2F(rec.scalar) * lastc) = 1 => logandp
cc = -1 => - logandp
cc::O * logandp
coeffp:O := (outputForm(rec.coeff, alpha) = 0::Z::O)@O
logandp := alpha * prefix('log::O, [outputForm(rec.logand, alpha)])
if (cc := Q2F(rec.scalar)) ~= 1 then
logandp := cc::O * logandp
sum(logandp, coeffp)
nesimp l ==
[[u,x] for x in removeDuplicates!([ne.intvar for ne in l]$List(F))
| (u := neselect(l, x)) ~= 0]
if (F has LiouvillianFunctionCategory) and (F has RetractableTo Symbol) then
retractIfCan u ==
empty? logpart u =>
ratpart u +
+/[integral(ne.integrand, retract(ne.intvar)@Symbol)$F
for ne in notelem u]
"failed"
else
retractIfCan u ==
elem? u and empty? logpart u => ratpart u
"failed"
r:Q * u:% ==
r = 0 => 0
mkAnswer(Q2F(r) * ratpart u, map(timelog(r, #1), logpart u),
map(timene(r, #1), notelem u))
-- Initial attempt, quick and dirty, no simplification
u + v ==
mkAnswer(ratpart u + ratpart v, concat(logpart u, logpart v),
nesimp concat(notelem u, notelem v))
if F has PartialDifferentialRing(Symbol) then
differentiate(u:%, x:Symbol):F == differentiate(u, differentiate(#1, x))
differentiate(u:%, derivation:F -> F):F ==
derivation ratpart u +
+/[pLogDeriv(log, derivation) for log in logpart u]
+ (+/[pNeDeriv(ne, derivation) for ne in notelem u])
pNeDeriv(ne, derivation) ==
one? derivation(ne.intvar) => ne.integrand
zero? derivation(ne.integrand) => 0
error "pNeDeriv: cannot differentiate not elementary part into F"
pLogDeriv(log, derivation) ==
map(derivation, log.coeff) ~= 0 =>
error "pLogDeriv: can only handle logs with constant coefficients"
one?(n := degree(log.coeff)) =>
c := - (leadingCoefficient reductum log.coeff)
/ (leadingCoefficient log.coeff)
ans := (log.logand) c
Q2F(log.scalar) * c * derivation(ans) / ans
numlog := map(derivation, log.logand)
diflog := extendedEuclidean(log.logand, log.coeff,
numlog)::Record(coef1:UP, coef2:UP)
algans := diflog.coef1
ans:F := 0
for i in 0..(n-1) repeat
algans := algans * monomial(1, 1) rem log.coeff
ans := ans + coefficient(algans, i)
Q2F(log.scalar) * ans
coerce(u:%):O ==
(r := retractIfCan u) case F => r::F::O
l := reverse! [LOG2O f for f in logpart u]$List(O)
if ratpart u ~= 0 then l := concat(ratpart(u)::O, l)
if not elem? u then l := concat([NE2O f for f in notelem u], l)
null l => 0::O
reduce("+", l)
NE2O ne ==
int((ne.integrand)::O * hconcat ['d::O, (ne.intvar)::O])
@
\section{package IR2 IntegrationResultFunctions2}
<<package IR2 IntegrationResultFunctions2>>=
)abbrev package IR2 IntegrationResultFunctions2
++ Internally used by the integration packages
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 12 August 1992
++ Keywords: integration.
IntegrationResultFunctions2(E, F): Exports == Implementation where
E : Field
F : Field
SE ==> Symbol
Q ==> Fraction Integer
IRE ==> IntegrationResult E
IRF ==> IntegrationResult F
UPE ==> SparseUnivariatePolynomial E
UPF ==> SparseUnivariatePolynomial F
NEE ==> Record(integrand:E, intvar:E)
NEF ==> Record(integrand:F, intvar:F)
LGE ==> Record(scalar:Q, coeff:UPE, logand:UPE)
LGF ==> Record(scalar:Q, coeff:UPF, logand:UPF)
NLE ==> Record(coeff:E, logand:E)
NLF ==> Record(coeff:F, logand:F)
UFE ==> Union(Record(mainpart:E, limitedlogs:List NLE), "failed")
URE ==> Union(Record(ratpart:E, coeff:E), "failed")
UE ==> Union(E, "failed")
Exports ==> with
map: (E -> F, IRE) -> IRF
++ map(f,ire) \undocumented
map: (E -> F, URE) -> Union(Record(ratpart:F, coeff:F), "failed")
++ map(f,ure) \undocumented
map: (E -> F, UE) -> Union(F, "failed")
++ map(f,ue) \undocumented
map: (E -> F, UFE) ->
Union(Record(mainpart:F, limitedlogs:List NLF), "failed")
++ map(f,ufe) \undocumented
Implementation ==> add
import SparseUnivariatePolynomialFunctions2(E, F)
NEE2F: (E -> F, NEE) -> NEF
LGE2F: (E -> F, LGE) -> LGF
NLE2F: (E -> F, NLE) -> NLF
NLE2F(func, r) == [func(r.coeff), func(r.logand)]
NEE2F(func, n) == [func(n.integrand), func(n.intvar)]
map(func:E -> F, u:UE) == (u case "failed" => "failed"; func(u::E))
map(func:E -> F, ir:IRE) ==
mkAnswer(func ratpart ir, [LGE2F(func, f) for f in logpart ir],
[NEE2F(func, g) for g in notelem ir])
map(func:E -> F, u:URE) ==
u case "failed" => "failed"
[func(u.ratpart), func(u.coeff)]
map(func:E -> F, u:UFE) ==
u case "failed" => "failed"
[func(u.mainpart), [NLE2F(func, f) for f in u.limitedlogs]]
LGE2F(func, lg) ==
[lg.scalar, map(func, lg.coeff), map(func, lg.logand)]
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- SPAD files for the integration world should be compiled in the
-- following order:
--
-- INTAUX rderf intrf rdeef intef irexpand integrat
<<domain IR IntegrationResult>>
<<package IR2 IntegrationResultFunctions2>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|