1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra intaf.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package INTG0 GenusZeroIntegration}
<<package INTG0 GenusZeroIntegration>>=
)abbrev package INTG0 GenusZeroIntegration
++ Rationalization of several types of genus 0 integrands;
++ Author: Manuel Bronstein
++ Date Created: 11 October 1988
++ Date Last Updated: 24 June 1994
++ Description:
++ This internal package rationalises integrands on curves of the form:
++ \spad{y\^2 = a x\^2 + b x + c}
++ \spad{y\^2 = (a x + b) / (c x + d)}
++ \spad{f(x, y) = 0} where f has degree 1 in x
++ The rationalization is done for integration, limited integration,
++ extended integration and the risch differential equation;
GenusZeroIntegration(R, F, L): Exports == Implementation where
R: Join(GcdDomain, RetractableTo Integer, CharacteristicZero,
LinearlyExplicitRingOver Integer)
F: Join(FunctionSpace R, AlgebraicallyClosedField,
TranscendentalFunctionCategory)
L: SetCategory
SY ==> Symbol
Q ==> Fraction Integer
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
UP ==> SparseUnivariatePolynomial F
RF ==> Fraction UP
UPUP ==> SparseUnivariatePolynomial RF
IR ==> IntegrationResult F
LOG ==> Record(coeff:F, logand:F)
U1 ==> Union(F, "failed")
U2 ==> Union(Record(ratpart:F, coeff:F),"failed")
U3 ==> Union(Record(mainpart:F, limitedlogs:List LOG), "failed")
REC ==> Record(coeff:F, var:List K, val:List F)
ODE ==> Record(particular: Union(F, "failed"), basis: List F)
LODO==> LinearOrdinaryDifferentialOperator1 RF
Exports ==> with
palgint0 : (F, K, K, F, UP) -> IR
++ palgint0(f, x, y, d, p) returns the integral of \spad{f(x,y)dx}
++ where y is an algebraic function of x satisfying
++ \spad{d(x)\^2 y(x)\^2 = P(x)}.
palgint0 : (F, K, K, K, F, RF) -> IR
++ palgint0(f, x, y, z, t, c) returns the integral of \spad{f(x,y)dx}
++ where y is an algebraic function of x satisfying
++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.
++ Argument z is a dummy variable not appearing in \spad{f(x,y)}.
palgextint0: (F, K, K, F, F, UP) -> U2
++ palgextint0(f, x, y, g, d, p) returns functions \spad{[h, c]} such
++ that \spad{dh/dx = f(x,y) - c g}, where y is an algebraic function
++ of x satisfying \spad{d(x)\^2 y(x)\^2 = P(x)},
++ or "failed" if no such functions exist.
palgextint0: (F, K, K, F, K, F, RF) -> U2
++ palgextint0(f, x, y, g, z, t, c) returns functions \spad{[h, d]} such
++ that \spad{dh/dx = f(x,y) - d g}, where y is an algebraic function
++ of x satisfying \spad{f(x,y)dx = c f(t,y) dy}, and c and t are rational
++ functions of y.
++ Argument z is a dummy variable not appearing in \spad{f(x,y)}.
++ The operation returns "failed" if no such functions exist.
palglimint0: (F, K, K, List F, F, UP) -> U3
++ palglimint0(f, x, y, [u1,...,un], d, p) returns functions
++ \spad{[h,[[ci, ui]]]} such that the ui's are among \spad{[u1,...,un]}
++ and \spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,
++ and "failed" otherwise.
++ Argument y is an algebraic function of x satisfying
++ \spad{d(x)\^2y(x)\^2 = P(x)}.
palglimint0: (F, K, K, List F, K, F, RF) -> U3
++ palglimint0(f, x, y, [u1,...,un], z, t, c) returns functions
++ \spad{[h,[[ci, ui]]]} such that the ui's are among \spad{[u1,...,un]}
++ and \spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,
++ and "failed" otherwise.
++ Argument y is an algebraic function of x satisfying
++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.
palgRDE0 : (F, F, K, K, (F, F, SY) -> U1, F, UP) -> U1
++ palgRDE0(f, g, x, y, foo, d, p) returns a function \spad{z(x,y)}
++ such that \spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a z exists,
++ and "failed" otherwise.
++ Argument y is an algebraic function of x satisfying
++ \spad{d(x)\^2y(x)\^2 = P(x)}.
++ Argument foo, called by \spad{foo(a, b, x)}, is a function that solves
++ \spad{du/dx + n * da/dx u(x) = u(x)}
++ for an unknown \spad{u(x)} not involving y.
palgRDE0 : (F, F, K, K, (F, F, SY) -> U1, K, F, RF) -> U1
++ palgRDE0(f, g, x, y, foo, t, c) returns a function \spad{z(x,y)}
++ such that \spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a z exists,
++ and "failed" otherwise.
++ Argument y is an algebraic function of x satisfying
++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.
++ Argument \spad{foo}, called by \spad{foo(a, b, x)}, is a function that
++ solves \spad{du/dx + n * da/dx u(x) = u(x)}
++ for an unknown \spad{u(x)} not involving y.
univariate: (F, K, K, UP) -> UPUP
++ univariate(f,k,k,p) \undocumented
multivariate: (UPUP, K, F) -> F
++ multivariate(u,k,f) \undocumented
lift: (UP, K) -> UPUP
++ lift(u,k) \undocumented
if L has LinearOrdinaryDifferentialOperatorCategory F then
palgLODE0 : (L, F, K, K, F, UP) -> ODE
++ palgLODE0(op, g, x, y, d, p) returns the solution of \spad{op f = g}.
++ Argument y is an algebraic function of x satisfying
++ \spad{d(x)\^2y(x)\^2 = P(x)}.
palgLODE0 : (L, F, K, K, K, F, RF) -> ODE
++ palgLODE0(op,g,x,y,z,t,c) returns the solution of \spad{op f = g}
++ Argument y is an algebraic function of x satisfying
++ \spad{f(x,y)dx = c f(t,y) dy}; c and t are rational functions of y.
Implementation ==> add
import RationalIntegration(F, UP)
import AlgebraicManipulations(R, F)
import IntegrationResultFunctions2(RF, F)
import ElementaryFunctionStructurePackage(R, F)
import SparseUnivariatePolynomialFunctions2(F, RF)
import PolynomialCategoryQuotientFunctions(IndexedExponents K,
K, R, P, F)
mkRat : (F, REC, List K) -> RF
mkRatlx : (F, K, K, F, K, RF) -> RF
quadsubst: (K, K, F, UP) -> Record(diff:F, subs:REC, newk:List K)
kerdiff : (F, F) -> List K
checkroot: (F, List K) -> F
univ : (F, List K, K) -> RF
dummy := kernel(new()$SY)@K
kerdiff(sa, a) == setDifference(kernels sa, kernels a)
checkroot(f, l) == (empty? l => f; rootNormalize(f, first l))
univ(c, l, x) == univariate(checkroot(c, l), x)
univariate(f, x, y, p) == lift(univariate(f, y, p), x)
lift(p, k) == map(univariate(#1, k), p)
palgint0(f, x, y, den, radi) ==
-- y is a square root so write f as f1 y + f0 and integrate separately
ff := univariate(f, x, y, minPoly y)
f0 := reductum ff
pr := quadsubst(x, y, den, radi)
map(#1(x::F), integrate(retract(f0)@RF)) +
map(#1(pr.diff),
integrate
mkRat(multivariate(leadingMonomial ff,x,y::F), pr.subs, pr.newk))
-- the algebraic relation is (den * y)**2 = p where p is a * x**2 + b * x + c
-- if p is squarefree, then parametrize in the following form:
-- u = y - x \sqrt{a}
-- x = (u^2 - c) / (b - 2 u \sqrt{a}) = h(u)
-- dx = h'(u) du
-- y = (u + a h(u)) / den = g(u)
-- if a is a perfect square,
-- u = (y - \sqrt{c}) / x
-- x = (b - 2 u \sqrt{c}) / (u^2 - a) = h(u)
-- dx = h'(u) du
-- y = (u h(u) + \sqrt{c}) / den = g(u)
-- otherwise.
-- if p is a square p = a t^2, then we choose only one branch for now:
-- u = x
-- x = u = h(u)
-- dx = du
-- y = t \sqrt{a} / den = g(u)
-- returns [u(x,y), [h'(u), [x,y], [h(u), g(u)], l] in both cases,
-- where l is empty if no new square root was needed,
-- l := [k] if k is the new square root kernel that was created.
quadsubst(x, y, den, p) ==
u := dummy::F
b := coefficient(p, 1)
c := coefficient(p, 0)
sa := rootSimp sqrt(a := coefficient(p, 2))
zero?(b * b - 4 * a * c) => -- case where p = a (x + b/(2a))^2
[x::F, [1, [x, y], [u, sa * (u + b / (2*a)) / eval(den,x,u)]], empty()]
empty? kerdiff(sa, a) =>
bm2u := b - 2 * u * sa
q := eval(den, x, xx := (u**2 - c) / bm2u)
yy := (ua := u + xx * sa) / q
[y::F - x::F * sa, [2 * ua / bm2u, [x, y], [xx, yy]], empty()]
u2ma:= u**2 - a
sc := rootSimp sqrt c
q := eval(den, x, xx := (b - 2 * u * sc) / u2ma)
yy := (ux := xx * u + sc) / q
[(y::F - sc) / x::F, [- 2 * ux / u2ma, [x ,y], [xx, yy]], kerdiff(sc, c)]
mkRatlx(f,x,y,t,z,dx) ==
rat := univariate(eval(f, [x, y], [t, z::F]), z) * dx
numer(rat) / denom(rat)
mkRat(f, rec, l) ==
rat:=univariate(checkroot(rec.coeff * eval(f,rec.var,rec.val), l), dummy)
numer(rat) / denom(rat)
palgint0(f, x, y, z, xx, dx) ==
map(multivariate(#1, y), integrate mkRatlx(f, x, y, xx, z, dx))
palgextint0(f, x, y, g, z, xx, dx) ==
map(multivariate(#1, y),
extendedint(mkRatlx(f,x,y,xx,z,dx), mkRatlx(g,x,y,xx,z,dx)))
palglimint0(f, x, y, lu, z, xx, dx) ==
map(multivariate(#1, y), limitedint(mkRatlx(f, x, y, xx, z, dx),
[mkRatlx(u, x, y, xx, z, dx) for u in lu]))
palgRDE0(f, g, x, y, rischde, z, xx, dx) ==
(u := rischde(eval(f, [x, y], [xx, z::F]),
multivariate(dx, z) * eval(g, [x, y], [xx, z::F]),
symbolIfCan(z)::SY)) case "failed" => "failed"
eval(u::F, z, y::F)
-- given p = sum_i a_i(X) Y^i, returns sum_i a_i(x) y^i
multivariate(p, x, y) ==
(map(multivariate(#1, x),
p)$SparseUnivariatePolynomialFunctions2(RF, F))
(y)
palgextint0(f, x, y, g, den, radi) ==
pr := quadsubst(x, y, den, radi)
map(#1(pr.diff),
extendedint(mkRat(f, pr.subs, pr.newk), mkRat(g, pr.subs, pr.newk)))
palglimint0(f, x, y, lu, den, radi) ==
pr := quadsubst(x, y, den, radi)
map(#1(pr.diff),
limitedint(mkRat(f, pr.subs, pr.newk),
[mkRat(u, pr.subs, pr.newk) for u in lu]))
palgRDE0(f, g, x, y, rischde, den, radi) ==
pr := quadsubst(x, y, den, radi)
(u := rischde(checkroot(eval(f, pr.subs.var, pr.subs.val), pr.newk),
checkroot(pr.subs.coeff * eval(g, pr.subs.var, pr.subs.val),
pr.newk), symbolIfCan(dummy)::SY)) case "failed"
=> "failed"
eval(u::F, dummy, pr.diff)
if L has LinearOrdinaryDifferentialOperatorCategory F then
import RationalLODE(F, UP)
palgLODE0(eq, g, x, y, den, radi) ==
pr := quadsubst(x, y, den, radi)
d := monomial(univ(inv(pr.subs.coeff), pr.newk, dummy), 1)$LODO
di:LODO := 1 -- will accumulate the powers of d
op:LODO := 0 -- will accumulate the new LODO
for i in 0..degree eq repeat
op := op + univ(eval(coefficient(eq, i), pr.subs.var, pr.subs.val),
pr.newk, dummy) * di
di := d * di
rec := ratDsolve(op,univ(eval(g,pr.subs.var,pr.subs.val),pr.newk,dummy))
bas:List(F) := [b(pr.diff) for b in rec.basis]
rec.particular case "failed" => ["failed", bas]
[((rec.particular)::RF) (pr.diff), bas]
palgLODE0(eq, g, x, y, kz, xx, dx) ==
d := monomial(univariate(inv multivariate(dx, kz), kz), 1)$LODO
di:LODO := 1 -- will accumulate the powers of d
op:LODO := 0 -- will accumulate the new LODO
lk:List(K) := [x, y]
lv:List(F) := [xx, kz::F]
for i in 0..degree eq repeat
op := op + univariate(eval(coefficient(eq, i), lk, lv), kz) * di
di := d * di
rec := ratDsolve(op, univariate(eval(g, lk, lv), kz))
bas:List(F) := [multivariate(b, y) for b in rec.basis]
rec.particular case "failed" => ["failed", bas]
[multivariate((rec.particular)::RF, y), bas]
@
\section{package INTPAF PureAlgebraicIntegration}
<<package INTPAF PureAlgebraicIntegration>>=
)abbrev package INTPAF PureAlgebraicIntegration
++ Integration of pure algebraic functions;
++ Author: Manuel Bronstein
++ Date Created: 27 May 1988
++ Date Last Updated: 24 June 1994
++ Description:
++ This package provides functions for integration, limited integration,
++ extended integration and the risch differential equation for
++ pure algebraic integrands;
PureAlgebraicIntegration(R, F, L): Exports == Implementation where
R: Join(GcdDomain,RetractableTo Integer, CharacteristicZero,
LinearlyExplicitRingOver Integer)
F: Join(FunctionSpace R, AlgebraicallyClosedField,
TranscendentalFunctionCategory)
L: SetCategory
SY ==> Symbol
N ==> NonNegativeInteger
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
UP ==> SparseUnivariatePolynomial F
RF ==> Fraction UP
UPUP==> SparseUnivariatePolynomial RF
IR ==> IntegrationResult F
IR2 ==> IntegrationResultFunctions2(curve, F)
ALG ==> AlgebraicIntegrate(R, F, UP, UPUP, curve)
LDALG ==> LinearOrdinaryDifferentialOperator1 curve
RDALG ==> PureAlgebraicLODE(F, UP, UPUP, curve)
LOG ==> Record(coeff:F, logand:F)
REC ==> Record(particular:U1, basis:List F)
CND ==> Record(left:UP, right:UP)
CHV ==> Record(int:UPUP, left:UP, right:UP, den:RF, deg:N)
U1 ==> Union(F, "failed")
U2 ==> Union(Record(ratpart:F, coeff:F),"failed")
U3 ==> Union(Record(mainpart:F, limitedlogs:List LOG), "failed")
FAIL==> error "failed - cannot handle that integrand"
Exports ==> with
palgint : (F, K, K) -> IR
++ palgint(f, x, y) returns the integral of \spad{f(x,y)dx}
++ where y is an algebraic function of x.
palgextint: (F, K, K, F) -> U2
++ palgextint(f, x, y, g) returns functions \spad{[h, c]} such that
++ \spad{dh/dx = f(x,y) - c g}, where y is an algebraic function of x;
++ returns "failed" if no such functions exist.
palglimint: (F, K, K, List F) -> U3
++ palglimint(f, x, y, [u1,...,un]) returns functions
++ \spad{[h,[[ci, ui]]]} such that the ui's are among \spad{[u1,...,un]}
++ and \spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,
++ "failed" otherwise;
++ y is an algebraic function of x.
palgRDE : (F, F, F, K, K, (F, F, SY) -> U1) -> U1
++ palgRDE(nfp, f, g, x, y, foo) returns a function \spad{z(x,y)}
++ such that \spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a z exists,
++ "failed" otherwise;
++ y is an algebraic function of x;
++ \spad{foo(a, b, x)} is a function that solves
++ \spad{du/dx + n * da/dx u(x) = u(x)}
++ for an unknown \spad{u(x)} not involving y.
++ \spad{nfp} is \spad{n * df/dx}.
if L has LinearOrdinaryDifferentialOperatorCategory F then
palgLODE: (L, F, K, K, SY) -> REC
++ palgLODE(op, g, kx, y, x) returns the solution of \spad{op f = g}.
++ y is an algebraic function of x.
Implementation ==> add
import IntegrationTools(R, F)
import RationalIntegration(F, UP)
import GenusZeroIntegration(R, F, L)
import ChangeOfVariable(F, UP, UPUP)
import IntegrationResultFunctions2(F, F)
import IntegrationResultFunctions2(RF, F)
import SparseUnivariatePolynomialFunctions2(F, RF)
import UnivariatePolynomialCommonDenominator(UP, RF, UPUP)
import PolynomialCategoryQuotientFunctions(IndexedExponents K,
K, R, P, F)
quadIfCan : (K, K) -> Union(Record(coef:F, poly:UP), "failed")
linearInXIfCan : (K, K) -> Union(Record(xsub:F, dxsub:RF), "failed")
prootintegrate : (F, K, K) -> IR
prootintegrate1: (UPUP, K, K, UPUP) -> IR
prootextint : (F, K, K, F) -> U2
prootlimint : (F, K, K, List F) -> U3
prootRDE : (F, F, F, K, K, (F, F, SY) -> U1) -> U1
palgRDE1 : (F, F, K, K) -> U1
palgLODE1 : (List F, F, K, K, SY) -> REC
palgintegrate : (F, K, K) -> IR
palgext : (F, K, K, F) -> U2
palglim : (F, K, K, List F) -> U3
UPUP2F1 : (UPUP, RF, RF, K, K) -> F
UPUP2F0 : (UPUP, K, K) -> F
RF2UPUP : (RF, UPUP) -> UPUP
algaddx : (IR, F) -> IR
chvarIfCan : (UPUP, RF, UP, RF) -> Union(UPUP, "failed")
changeVarIfCan : (UPUP, RF, N) -> Union(CHV, "failed")
rationalInt : (UPUP, N, UP) -> IntegrationResult RF
chv : (UPUP, N, F, F) -> RF
chv0 : (UPUP, N, F, F) -> F
candidates : UP -> List CND
dummy := new()$SY
dumk := kernel(dummy)@K
UPUP2F1(p, t, cf, kx, k) == UPUP2F0(eval(p, t, cf), kx, k)
UPUP2F0(p, kx, k) == multivariate(p, kx, k::F)
chv(f, n, a, b) == univariate(chv0(f, n, a, b), dumk)
RF2UPUP(f, modulus) ==
bc := extendedEuclidean(map(#1::UP::RF, denom f), modulus,
1)::Record(coef1:UPUP, coef2:UPUP)
(map(#1::UP::RF, numer f) * bc.coef1) rem modulus
-- returns "failed", or (xx, c) such that f(x, y)dx = f(xx, y) c dy
-- if p(x, y) = 0 is linear in x
linearInXIfCan(x, y) ==
a := b := 0$UP
p := clearDenominator lift(minPoly y, x)
while p ~= 0 repeat
degree(q := numer leadingCoefficient p) > 1 => return "failed"
a := a + monomial(coefficient(q, 1), d := degree p)
b := b - monomial(coefficient(q, 0), d)
p := reductum p
xx:RF := b / a
[xx(dumk::F), differentiate(xx, differentiate)]
-- return Int(f(x,y)dx) where y is an n^th root of a rational function in x
prootintegrate(f, x, y) ==
modulus := lift(p := minPoly y, x)
rf := reductum(ff := univariate(f, x, y, p))
((r := retractIfCan(rf)@Union(RF,"failed")) case RF) and rf ~= 0 =>
-- in this case, ff := lc(ff) y^i + r so we integrate both terms
-- separately to gain time
map(#1(x::F), integrate(r::RF)) +
prootintegrate1(leadingMonomial ff, x, y, modulus)
prootintegrate1(ff, x, y, modulus)
prootintegrate1(ff, x, y, modulus) ==
chv:CHV
r := radPoly(modulus)::Record(radicand:RF, deg:N)
(uu := changeVarIfCan(ff, r.radicand, r.deg)) case CHV =>
chv := uu::CHV
newalg := nthRoot((chv.left)(dumk::F), chv.deg)
kz := retract(numer newalg)@K
newf := multivariate(chv.int, ku := dumk, newalg)
vu := (chv.right)(x::F)
vz := (chv.den)(x::F) * (y::F) * denom(newalg)::F
map(eval(#1, [ku, kz], [vu, vz]), palgint(newf, ku, kz))
cv := chvar(ff, modulus)
r := radPoly(cv.poly)::Record(radicand:RF, deg:N)
qprime := differentiate(q := retract(r.radicand)@UP)::RF
not zero? qprime and
((u := chvarIfCan(cv.func, 1, q, inv qprime)) case UPUP) =>
m := monomial(1, r.deg)$UPUP - q::RF::UPUP
map(UPUP2F1(RF2UPUP(#1, m), cv.c1, cv.c2, x, y),
rationalInt(u::UPUP, r.deg, monomial(1, 1)))
curve := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
algaddx(map(UPUP2F1(lift #1, cv.c1, cv.c2, x, y),
palgintegrate(reduce(cv.func), differentiate$UP)$ALG)$IR2, x::F)
-- Do the rationalizing change of variable
-- Int(f(x, y) dx) --> Int(n u^(n-1) f((u^n - b)/a, u) / a du) where
-- u^n = y^n = g(x) = a x + b
-- returns the integral as an integral of a rational function in u
rationalInt(f, n, g) ==
not one? degree g => error "rationalInt: radicand must be linear"
a := leadingCoefficient g
integrate(n * monomial(inv a, (n-1)::N)$UP
* chv(f, n, a, leadingCoefficient reductum g))
-- Do the rationalizing change of variable f(x,y) --> f((u^n - b)/a, u) where
-- u = y = (a x + b)^(1/n).
-- Returns f((u^n - b)/a,u) as an element of F
chv0(f, n, a, b) ==
d := dumk::F
(f (d::UP::RF)) ((d ** n - b) / a)
-- candidates(p) returns a list of pairs [g, u] such that p(x) = g(u(x)),
-- those u's are candidates for change of variables
-- currently uses a dumb heuristic where the candidates u's are p itself
-- and all the powers x^2, x^3, ..., x^{deg(p)},
-- will use polynomial decomposition in smarter days MB 8/93
candidates p ==
l:List(CND) := empty()
ground? p => l
for i in 2..degree p repeat
if (u := composite(p, xi := monomial(1, i))) case UP then
l := concat([u::UP, xi], l)
concat([monomial(1, 1), p], l)
-- checks whether Int(p(x, y) dx) can be rewritten as
-- Int(r(u, z) du) where u is some polynomial of x,
-- z = d y for some polynomial d, and z^m = g(u)
-- returns either [r(u, z), g, u, d, m] or "failed"
-- we have y^n = radi
changeVarIfCan(p, radi, n) ==
rec := rootPoly(radi, n)
for cnd in candidates(rec.radicand) repeat
(u := chvarIfCan(p, rec.coef, cnd.right,
inv(differentiate(cnd.right)::RF))) case UPUP =>
return [u::UPUP, cnd.left, cnd.right, rec.coef, rec.exponent]
"failed"
-- checks whether Int(p(x, y) dx) can be rewritten as
-- Int(r(u, z) du) where u is some polynomial of x and z = d y
-- we have y^n = a(x)/d(x)
-- returns either "failed" or r(u, z)
chvarIfCan(p, d, u, u1) ==
ans:UPUP := 0
while p ~= 0 repeat
(v := composite(u1 * leadingCoefficient(p) / d ** degree(p), u))
case "failed" => return "failed"
ans := ans + monomial(v::RF, degree p)
p := reductum p
ans
algaddx(i, xx) ==
elem? i => i
mkAnswer(ratpart i, logpart i,
[[- ne.integrand / (xx**2), xx] for ne in notelem i])
prootRDE(nfp, f, g, x, k, rde) ==
modulus := lift(p := minPoly k, x)
r := radPoly(modulus)::Record(radicand:RF, deg:N)
rec := rootPoly(r.radicand, r.deg)
dqdx := inv(differentiate(q := rec.radicand)::RF)
((uf := chvarIfCan(ff := univariate(f,x,k,p),rec.coef,q,1)) case UPUP) and
((ug:=chvarIfCan(gg:=univariate(g,x,k,p),rec.coef,q,dqdx)) case UPUP) =>
(u := rde(chv0(uf::UPUP, rec.exponent, 1, 0), rec.exponent *
(dumk::F) ** (rec.exponent * (rec.exponent - 1))
* chv0(ug::UPUP, rec.exponent, 1, 0),
symbolIfCan(dumk)::SY)) case "failed" => "failed"
eval(u::F, dumk, k::F)
one?(rec.coef) =>
curve := RadicalFunctionField(F, UP, UPUP, q::RF, rec.exponent)
rc := algDsolve(D()$LDALG + reduce(univariate(nfp, x, k, p))::LDALG,
reduce univariate(g, x, k, p))$RDALG
rc.particular case "failed" => "failed"
UPUP2F0(lift((rc.particular)::curve), x, k)
palgRDE1(nfp, g, x, k)
prootlimint(f, x, k, lu) ==
modulus := lift(p := minPoly k, x)
r := radPoly(modulus)::Record(radicand:RF, deg:N)
rec := rootPoly(r.radicand, r.deg)
dqdx := inv(differentiate(q := rec.radicand)::RF)
(uf := chvarIfCan(ff := univariate(f,x,k,p),rec.coef,q,dqdx)) case UPUP =>
l := empty()$List(RF)
n := rec.exponent * monomial(1, (rec.exponent - 1)::N)$UP
for u in lu repeat
if ((v:=chvarIfCan(uu:=univariate(u,x,k,p),rec.coef,q,dqdx))case UPUP)
then l := concat(n * chv(v::UPUP,rec.exponent, 1, 0), l) else FAIL
m := monomial(1, rec.exponent)$UPUP - q::RF::UPUP
map(UPUP2F0(RF2UPUP(#1,m), x, k),
limitedint(n * chv(uf::UPUP, rec.exponent, 1, 0), reverse! l))
cv := chvar(ff, modulus)
r := radPoly(cv.poly)::Record(radicand:RF, deg:N)
dqdx := inv(differentiate(q := retract(r.radicand)@UP)::RF)
curve := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
(ui := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
case "failed" => FAIL
[UPUP2F1(lift(ui::curve), cv.c1, cv.c2, x, k), empty()]
prootextint(f, x, k, g) ==
modulus := lift(p := minPoly k, x)
r := radPoly(modulus)::Record(radicand:RF, deg:N)
rec := rootPoly(r.radicand, r.deg)
dqdx := inv(differentiate(q := rec.radicand)::RF)
((uf:=chvarIfCan(ff:=univariate(f,x,k,p),rec.coef,q,dqdx)) case UPUP) and
((ug:=chvarIfCan(gg:=univariate(g,x,k,p),rec.coef,q,dqdx)) case UPUP) =>
m := monomial(1, rec.exponent)$UPUP - q::RF::UPUP
n := rec.exponent * monomial(1, (rec.exponent - 1)::N)$UP
map(UPUP2F0(RF2UPUP(#1,m), x, k),
extendedint(n * chv(uf::UPUP, rec.exponent, 1, 0),
n * chv(ug::UPUP, rec.exponent, 1, 0)))
cv := chvar(ff, modulus)
r := radPoly(cv.poly)::Record(radicand:RF, deg:N)
dqdx := inv(differentiate(q := retract(r.radicand)@UP)::RF)
curve := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
(u := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
case "failed" => FAIL
[UPUP2F1(lift(u::curve), cv.c1, cv.c2, x, k), 0]
palgRDE1(nfp, g, x, y) ==
palgLODE1([nfp, 1], g, x, y, symbolIfCan(x)::SY).particular
palgLODE1(eq, g, kx, y, x) ==
modulus:= lift(p := minPoly y, kx)
curve := AlgebraicFunctionField(F, UP, UPUP, modulus)
neq:LDALG := 0
for f in eq for i in 0.. repeat
neq := neq + monomial(reduce univariate(f, kx, y, p), i)
empty? remove!(y, remove!(kx, varselect(kernels g, x))) =>
rec := algDsolve(neq, reduce univariate(g, kx, y, p))$RDALG
bas:List(F) := [UPUP2F0(lift h, kx, y) for h in rec.basis]
rec.particular case "failed" => ["failed", bas]
[UPUP2F0(lift((rec.particular)::curve), kx, y), bas]
rec := algDsolve(neq, 0)
["failed", [UPUP2F0(lift h, kx, y) for h in rec.basis]]
palgintegrate(f, x, k) ==
modulus:= lift(p := minPoly k, x)
cv := chvar(univariate(f, x, k, p), modulus)
curve := AlgebraicFunctionField(F, UP, UPUP, cv.poly)
knownInfBasis(cv.deg)
algaddx(map(UPUP2F1(lift #1, cv.c1, cv.c2, x, k),
palgintegrate(reduce(cv.func), differentiate$UP)$ALG)$IR2, x::F)
palglim(f, x, k, lu) ==
modulus:= lift(p := minPoly k, x)
cv := chvar(univariate(f, x, k, p), modulus)
curve := AlgebraicFunctionField(F, UP, UPUP, cv.poly)
knownInfBasis(cv.deg)
(u := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
case "failed" => FAIL
[UPUP2F1(lift(u::curve), cv.c1, cv.c2, x, k), empty()]
palgext(f, x, k, g) ==
modulus:= lift(p := minPoly k, x)
cv := chvar(univariate(f, x, k, p), modulus)
curve := AlgebraicFunctionField(F, UP, UPUP, cv.poly)
knownInfBasis(cv.deg)
(u := palginfieldint(reduce(cv.func), differentiate$UP)$ALG)
case "failed" => FAIL
[UPUP2F1(lift(u::curve), cv.c1, cv.c2, x, k), 0]
palgint(f, x, y) ==
(v := linearInXIfCan(x, y)) case "failed" =>
(u := quadIfCan(x, y)) case "failed" =>
is?(y, 'nthRoot) => prootintegrate(f, x, y)
is?(y, 'rootOf) => palgintegrate(f, x, y)
FAIL
palgint0(f, x, y, u.coef, u.poly)
palgint0(f, x, y, dumk, v.xsub, v.dxsub)
palgextint(f, x, y, g) ==
(v := linearInXIfCan(x, y)) case "failed" =>
(u := quadIfCan(x, y)) case "failed" =>
is?(y, 'nthRoot) => prootextint(f, x, y, g)
is?(y, 'rootOf) => palgext(f, x, y, g)
FAIL
palgextint0(f, x, y, g, u.coef, u.poly)
palgextint0(f, x, y, g, dumk, v.xsub, v.dxsub)
palglimint(f, x, y, lu) ==
(v := linearInXIfCan(x, y)) case "failed" =>
(u := quadIfCan(x, y)) case "failed" =>
is?(y, 'nthRoot) => prootlimint(f, x, y, lu)
is?(y, 'rootOf) => palglim(f, x, y, lu)
FAIL
palglimint0(f, x, y, lu, u.coef, u.poly)
palglimint0(f, x, y, lu, dumk, v.xsub, v.dxsub)
palgRDE(nfp, f, g, x, y, rde) ==
(v := linearInXIfCan(x, y)) case "failed" =>
(u := quadIfCan(x, y)) case "failed" =>
is?(y, 'nthRoot) => prootRDE(nfp, f, g, x, y, rde)
palgRDE1(nfp, g, x, y)
palgRDE0(f, g, x, y, rde, u.coef, u.poly)
palgRDE0(f, g, x, y, rde, dumk, v.xsub, v.dxsub)
-- returns "failed", or (d, P) such that (dy)**2 = P(x)
-- and degree(P) = 2
quadIfCan(x, y) ==
(degree(p := minPoly y) = 2) and zero?(coefficient(p, 1)) =>
d := denom(ff :=
univariate(- coefficient(p, 0) / coefficient(p, 2), x))
degree(radi := d * numer ff) = 2 => [d(x::F), radi]
"failed"
"failed"
if L has LinearOrdinaryDifferentialOperatorCategory F then
palgLODE(eq, g, kx, y, x) ==
(v := linearInXIfCan(kx, y)) case "failed" =>
(u := quadIfCan(kx, y)) case "failed" =>
palgLODE1([coefficient(eq, i) for i in 0..degree eq], g, kx, y, x)
palgLODE0(eq, g, kx, y, u.coef, u.poly)
palgLODE0(eq, g, kx, y, dumk, v.xsub, v.dxsub)
@
\section{package INTAF AlgebraicIntegration}
<<package INTAF AlgebraicIntegration>>=
)abbrev package INTAF AlgebraicIntegration
++ Mixed algebraic integration;
++ Author: Manuel Bronstein
++ Date Created: 12 October 1988
++ Date Last Updated: 4 June 1988
++ Description:
++ This package provides functions for the integration of
++ algebraic integrands over transcendental functions;
AlgebraicIntegration(R, F): Exports == Implementation where
R : IntegralDomain
F : Join(AlgebraicallyClosedField, FunctionSpace R)
SY ==> Symbol
N ==> NonNegativeInteger
K ==> Kernel F
P ==> SparseMultivariatePolynomial(R, K)
UP ==> SparseUnivariatePolynomial F
RF ==> Fraction UP
UPUP==> SparseUnivariatePolynomial RF
IR ==> IntegrationResult F
IR2 ==> IntegrationResultFunctions2(curve, F)
ALG ==> AlgebraicIntegrate(R, F, UP, UPUP, curve)
FAIL==> error "failed - cannot handle that integrand"
Exports ==> with
algint: (F, K, K, UP -> UP) -> IR
++ algint(f, x, y, d) returns the integral of \spad{f(x,y)dx}
++ where y is an algebraic function of x;
++ d is the derivation to use on \spad{k[x]}.
Implementation ==> add
import ChangeOfVariable(F, UP, UPUP)
import PolynomialCategoryQuotientFunctions(IndexedExponents K,
K, R, P, F)
rootintegrate: (F, K, K, UP -> UP) -> IR
algintegrate : (F, K, K, UP -> UP) -> IR
UPUP2F : (UPUP, RF, K, K) -> F
F2UPUP : (F, K, K, UP) -> UPUP
UP2UPUP : (UP, K) -> UPUP
F2UPUP(f, kx, k, p) == UP2UPUP(univariate(f, k, p), kx)
rootintegrate(f, t, k, derivation) ==
r1 := mkIntegral(modulus := UP2UPUP(p := minPoly k, t))
f1 := F2UPUP(f, t, k, p) monomial(inv(r1.coef), 1)
r := radPoly(r1.poly)::Record(radicand:RF, deg:N)
q := retract(r.radicand)
curve := RadicalFunctionField(F, UP, UPUP, q::RF, r.deg)
map(UPUP2F(lift #1, r1.coef, t, k),
algintegrate(reduce f1, derivation)$ALG)$IR2
algintegrate(f, t, k, derivation) ==
r1 := mkIntegral(modulus := UP2UPUP(p := minPoly k, t))
f1 := F2UPUP(f, t, k, p) monomial(inv(r1.coef), 1)
modulus:= UP2UPUP(p := minPoly k, t)
curve := AlgebraicFunctionField(F, UP, UPUP, r1.poly)
map(UPUP2F(lift #1, r1.coef, t, k),
algintegrate(reduce f1, derivation)$ALG)$IR2
UP2UPUP(p, k) ==
map(univariate(#1,k),p)$SparseUnivariatePolynomialFunctions2(F,RF)
UPUP2F(p, cf, t, k) ==
map(multivariate(#1, t),
p)$SparseUnivariatePolynomialFunctions2(RF, F)
(multivariate(cf, t) * k::F)
algint(f, t, y, derivation) ==
is?(y, 'nthRoot) => rootintegrate(f, t, y, derivation)
is?(y, 'rootOf) => algintegrate(f, t, y, derivation)
FAIL
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- SPAD files for the integration world should be compiled in the
-- following order:
--
-- intaux rderf intrf curve curvepkg divisor pfo
-- intalg INTAF efstruc rdeef intef irexpand integrat
<<package INTG0 GenusZeroIntegration>>
<<package INTPAF PureAlgebraicIntegration>>
<<package INTAF AlgebraicIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|