aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/indexedp.spad.pamphlet
blob: d5c7eadea8964cb433865278ce11e4bf24eb2876 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra indexedp.spad}
\author{James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category IDPC IndexedDirectProductCategory}
<<category IDPC IndexedDirectProductCategory>>=
)abbrev category IDPC IndexedDirectProductCategory
++ Author: James Davenport
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This category represents the direct product of some set with
++ respect to an ordered indexing set.

IndexedDirectProductCategory(A:SetCategory,S:OrderedSet): Category ==
  SetCategory with
    map:           (A -> A, %) -> %
       ++ map(f,z) returns the new element created by applying the
       ++ function f to each component of the direct product element z.
    monomial:         (A, S) -> %
       ++ monomial(a,s) constructs a direct product element with the s
       ++ component set to \spad{a}
    leadingCoefficient:   % -> A
       ++ leadingCoefficient(z) returns the coefficient of the leading
       ++ (with respect to the ordering on the indexing set)
       ++ monomial of z.
       ++ Error: if z has no support.
    leadingSupport:   % -> S
       ++ leadingSupport(z) returns the index of leading
       ++ (with respect to the ordering on the indexing set) monomial of z.
       ++ Error: if z has no support.
    reductum:      % -> %
       ++ reductum(z) returns a new element created by removing the
       ++ leading coefficient/support pair from the element z.
       ++ Error: if z has no support.

@
\section{domain IDPO IndexedDirectProductObject}
<<domain IDPO IndexedDirectProductObject>>=
)abbrev domain IDPO IndexedDirectProductObject
++ Indexed direct products of objects over a set \spad{A}
++ of generators indexed by an ordered set S. All items have finite support.
IndexedDirectProductObject(A:SetCategory,S:OrderedSet): IndexedDirectProductCategory(A,S)
 == add
    --representations
       Term:=  Record(k:S,c:A)
       Rep:=  List Term
    --declarations
       x,y: %
       f: A -> A
       s: S
    --define
       x = y ==
         while not null x and not null y repeat
           x.first.k ~= y.first.k => return false
           x.first.c ~= y.first.c => return false
           x:=x.rest
           y:=y.rest
         null x and null y

       coerce(x:%):OutputForm ==
          bracket [rarrow(t.k :: OutputForm, t.c :: OutputForm) for t in x]

       -- sample():% == [[sample()$S,sample()$A]$Term]$Rep

       monomial(r,s) == [[s,r]]
       map(f,x) == [[tm.k,f(tm.c)] for tm in x]

       reductum x     ==
          rest x
       leadingCoefficient x  ==
          null x => error "Can't take leadingCoefficient of empty product element"
          x.first.c
       leadingSupport x  ==
          null x => error "Can't take leadingCoefficient of empty product element"
          x.first.k

@
\section{domain IDPAM IndexedDirectProductAbelianMonoid}
<<domain IDPAM IndexedDirectProductAbelianMonoid>>=
)abbrev domain IDPAM IndexedDirectProductAbelianMonoid
++ Indexed direct products of abelian monoids over an abelian monoid \spad{A} of
++ generators indexed by the ordered set S. All items have finite support.
++ Only non-zero terms are stored.
IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):
    Join(AbelianMonoid,IndexedDirectProductCategory(A,S))
 ==  IndexedDirectProductObject(A,S) add
    --representations
       Term:=  Record(k:S,c:A)
       Rep:=  List Term
       x,y: %
       r: A
       n: NonNegativeInteger
       f: A -> A
       s: S
       0  == []
       zero? x ==  null x

	-- PERFORMANCE CRITICAL; Should build list up
	--  by merging 2 sorted lists.   Doing this will
	-- avoid the recursive calls (very useful if there is a
	-- large number of vars in a polynomial.
--       x + y  ==
--          null x => y
--          null y => x
--          y.first.k > x.first.k => cons(y.first,(x + y.rest))
--          x.first.k > y.first.k => cons(x.first,(x.rest + y))
--          r:= x.first.c + y.first.c
--          r = 0 => x.rest + y.rest
--          cons([x.first.k,r],(x.rest + y.rest))
       qsetrest!: (Rep, Rep) -> Rep
       qsetrest!(l: Rep, e: Rep): Rep == RPLACD(l, e)$Lisp

       x + y == 
	 	null x => y
		null y => x
		endcell: Rep := empty()
		res:  Rep := empty()
		while not empty? x and not empty? y repeat 
			newcell := empty()
			if x.first.k = y.first.k then
				r:= x.first.c + y.first.c
				if not zero? r then 
					newcell := cons([x.first.k, r], empty())
				x := rest x
				y := rest y
			else if x.first.k > y.first.k then
				newcell := cons(x.first, empty())
				x := rest x
			else
				newcell := cons(y.first, empty())
				y := rest y
			if not empty? newcell then 
				if not empty? endcell then
					qsetrest!(endcell, newcell)
					endcell := newcell
				else
					res     := newcell;
					endcell := res
                end := 
		  empty? x => y
		  x
		if empty? res then res := end
		else qsetrest!(endcell, end)
		res

       n * x  ==
             n = 0 => 0
             n = 1 => x
             [[u.k,a] for u in x | (a:=n*u.c) ~= 0$A]

       monomial(r,s) == (r = 0 => 0; [[s,r]])
       map(f,x) == [[tm.k,a] for tm in x | (a:=f(tm.c)) ~= 0$A]

       reductum x     == (null x => 0; rest x)
       leadingCoefficient x  == (null x => 0; x.first.c)

@
\section{domain IDPOAM IndexedDirectProductOrderedAbelianMonoid}
<<domain IDPOAM IndexedDirectProductOrderedAbelianMonoid>>=
)abbrev domain IDPOAM IndexedDirectProductOrderedAbelianMonoid
++ Indexed direct products of ordered abelian monoids \spad{A} of
++ generators indexed by the ordered set S.
++ The inherited order is lexicographical.
++ All items have finite support: only non-zero terms are stored.
IndexedDirectProductOrderedAbelianMonoid(A:OrderedAbelianMonoid,S:OrderedSet):
    Join(OrderedAbelianMonoid,IndexedDirectProductCategory(A,S))
 ==  IndexedDirectProductAbelianMonoid(A,S) add
    --representations
       Term:=  Record(k:S,c:A)
       Rep:=  List Term
       x,y: %
       x<y ==
         empty? y => false
         empty? x => true   -- note careful order of these two lines
         y.first.k > x.first.k => true
         y.first.k < x.first.k => false
         y.first.c > x.first.c => true
         y.first.c < x.first.c => false
         x.rest < y.rest

@
\section{domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup}
<<domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup>>=
)abbrev domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup
++ Indexed direct products of ordered abelian monoid sups \spad{A},
++ generators indexed by the ordered set S.
++ All items have finite support: only non-zero terms are stored.
IndexedDirectProductOrderedAbelianMonoidSup(A:OrderedAbelianMonoidSup,S:OrderedSet):
    Join(OrderedAbelianMonoidSup,IndexedDirectProductCategory(A,S))
 ==  IndexedDirectProductOrderedAbelianMonoid(A,S) add
    --representations
       Term:=  Record(k:S,c:A)
       Rep:=  List Term
       x,y: %
       r: A
       s: S

       subtractIfCan(x,y) ==
         empty? y => x
         empty? x => "failed"
         x.first.k < y.first.k => "failed"
         x.first.k > y.first.k =>
             t:= subtractIfCan(x.rest, y)
             t case "failed" => "failed"
             cons( x.first, t)
         u:=subtractIfCan(x.first.c, y.first.c)
         u case "failed" => "failed"
         zero? u => subtractIfCan(x.rest, y.rest)
         t:= subtractIfCan(x.rest, y.rest)
         t case "failed" => "failed"
         cons([x.first.k,u],t)

       sup(x,y) ==
         empty? y => x
         empty? x => y
         x.first.k < y.first.k => cons(y.first,sup(x,y.rest))
         x.first.k > y.first.k => cons(x.first,sup(x.rest,y))
         u:=sup(x.first.c, y.first.c)
         cons([x.first.k,u],sup(x.rest,y.rest))

@
\section{domain IDPAG IndexedDirectProductAbelianGroup}
<<domain IDPAG IndexedDirectProductAbelianGroup>>=
)abbrev domain IDPAG IndexedDirectProductAbelianGroup
++ Indexed direct products of abelian groups over an abelian group \spad{A} of
++ generators indexed by the ordered set S.
++ All items have finite support: only non-zero terms are stored.
IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet):
    Join(AbelianGroup,IndexedDirectProductCategory(A,S))
 ==  IndexedDirectProductAbelianMonoid(A,S) add
    --representations
       Term:=  Record(k:S,c:A)
       Rep:=  List Term
       x,y: %
       r: A
       n: Integer
       f: A -> A
       s: S
       -x == [[u.k,-u.c] for u in x]
       n * x  ==
             n = 0 => 0
             n = 1 => x
             [[u.k,a] for u in x | (a:=n*u.c) ~= 0$A]

       qsetrest!: (Rep, Rep) -> Rep
       qsetrest!(l: Rep, e: Rep): Rep == RPLACD(l, e)$Lisp

       x - y ==
                null x => -y
                null y => x
                endcell: Rep := empty()
                res:  Rep := empty()
                while not empty? x and not empty? y repeat
                        newcell := empty()
                        if x.first.k = y.first.k then
                                r:= x.first.c - y.first.c
                                if not zero? r then
                                        newcell := cons([x.first.k, r], empty())
                                x := rest x
                                y := rest y
                        else if x.first.k > y.first.k then
                                newcell := cons(x.first, empty())
                                x := rest x
                        else
                                newcell := cons([y.first.k,-y.first.c], empty())
                                y := rest y
                        if not empty? newcell then
                                if not empty? endcell then
                                        qsetrest!(endcell, newcell)
                                        endcell := newcell
                                else
                                        res     := newcell;
                                        endcell := res
                end := 
                  empty? x => - y
                  x
                if empty? res then res := end
                else qsetrest!(endcell, end)
                res

--       x - y  ==
--          empty? x => - y
--          empty? y => x
--          y.first.k > x.first.k => cons([y.first.k,-y.first.c],(x - y.rest))
--          x.first.k > y.first.k => cons(x.first,(x.rest - y))
--          r:= x.first.c - y.first.c
--          r = 0 => x.rest - y.rest
--          cons([x.first.k,r],(x.rest - y.rest))

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<category IDPC IndexedDirectProductCategory>>
<<domain IDPO IndexedDirectProductObject>>
<<domain IDPAM IndexedDirectProductAbelianMonoid>>
<<domain IDPOAM IndexedDirectProductOrderedAbelianMonoid>>
<<domain IDPOAMS IndexedDirectProductOrderedAbelianMonoidSup>>
<<domain IDPAG IndexedDirectProductAbelianGroup>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}