1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra gseries.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain GSERIES GeneralUnivariatePowerSeries}
<<domain GSERIES GeneralUnivariatePowerSeries>>=
)abbrev domain GSERIES GeneralUnivariatePowerSeries
++ Author: Clifton J. Williamson
++ Date Created: 22 September 1993
++ Date Last Updated: June 18, 2010
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords: series, Puiseux
++ Examples:
++ References:
++ Description:
++ This is a category of univariate Puiseux series constructed
++ from univariate Laurent series. A Puiseux series is represented
++ by a pair \spad{[r,f(x)]}, where r is a positive rational number and
++ \spad{f(x)} is a Laurent series. This pair represents the Puiseux
++ series \spad{f(x\^r)}.
GeneralUnivariatePowerSeries(Coef,var,cen): Exports == Implementation where
Coef : Ring
var : Symbol
cen : Coef
I ==> Integer
UTS ==> UnivariateTaylorSeries
ULS ==> UnivariateLaurentSeries
UPXS ==> UnivariatePuiseuxSeries
EFULS ==> ElementaryFunctionsUnivariateLaurentSeries
EFUPXS ==> ElementaryFunctionsUnivariatePuiseuxSeries
FS2UPS ==> FunctionSpaceToUnivariatePowerSeries
Exports ==> Join(UnivariatePuiseuxSeriesCategory Coef,_
PartialDifferentialDomain(%,Variable var)) with
coerce: Variable(var) -> %
++ coerce(var) converts the series variable \spad{var} into a
++ Puiseux series.
coerce: UPXS(Coef,var,cen) -> %
++ coerce(f) converts a Puiseux series to a general power series.
if Coef has Algebra Fraction Integer then
integrate: (%,Variable(var)) -> %
++ \spad{integrate(f(x))} returns an anti-derivative of the power
++ series \spad{f(x)} with constant coefficient 0.
++ We may integrate a series when we can divide coefficients
++ by integers.
Implementation ==> UnivariatePuiseuxSeries(Coef,var,cen) add
coerce(upxs:UPXS(Coef,var,cen)) == upxs pretend %
puiseux: % -> UPXS(Coef,var,cen)
puiseux f == f pretend UPXS(Coef,var,cen)
if Coef has Algebra Fraction Integer then
differentiate f ==
str1 : String := "'differentiate' unavailable on this domain; "
str2 : String := "use 'approximate' first"
error concat(str1,str2)
differentiate(f:%,v:Variable(var)) == differentiate f
if Coef has PartialDifferentialRing(Symbol) then
differentiate(f:%,s:Symbol) ==
(s = variable(f)) =>
str1 : String := "'differentiate' unavailable on this domain; "
str2 : String := "use 'approximate' first"
error concat(str1,str2)
dcds := differentiate(center f,s)
deriv := differentiate(puiseux f) :: %
map(differentiate(#1,s),f) - dcds * deriv
integrate f ==
str1 : String := "'integrate' unavailable on this domain; "
str2 : String := "use 'approximate' first"
error concat(str1,str2)
integrate(f:%,v:Variable(var)) == integrate f
if Coef has integrate: (Coef,Symbol) -> Coef and _
Coef has variables: Coef -> List Symbol then
integrate(f:%,s:Symbol) ==
(s = variable(f)) =>
str1 : String := "'integrate' unavailable on this domain; "
str2 : String := "use 'approximate' first"
error concat(str1,str2)
not entry?(s,variables center f) => map(integrate(#1,s),f)
error "integrate: center is a function of variable of integration"
if Coef has TranscendentalFunctionCategory and _
Coef has PrimitiveFunctionCategory and _
Coef has AlgebraicallyClosedFunctionSpace Integer then
integrateWithOneAnswer: (Coef,Symbol) -> Coef
integrateWithOneAnswer(f,s) ==
res := integrate(f,s)$FunctionSpaceIntegration(Integer,Coef)
res case Coef => res :: Coef
first(res :: List Coef)
integrate(f:%,s:Symbol) ==
(s = variable(f)) =>
str1 : String := "'integrate' unavailable on this domain; "
str2 : String := "use 'approximate' first"
error concat(str1,str2)
not entry?(s,variables center f) =>
map(integrateWithOneAnswer(#1,s),f)
error "integrate: center is a function of variable of integration"
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain GSERIES GeneralUnivariatePowerSeries>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|