aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/gdpoly.spad.pamphlet
blob: 59004a5bf61e26962aaec286d39bb7ec49b90102 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra gdpoly.spad}
\author{Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain GDMP GeneralDistributedMultivariatePolynomial}
<<domain GDMP GeneralDistributedMultivariatePolynomial>>=
)abbrev domain GDMP GeneralDistributedMultivariatePolynomial
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, degree, eval, coefficient, monomial, differentiate,
++ resultant, gcd, leadingCoefficient
++ Related Constructors: DistributedMultivariatePolynomial,
++ HomogeneousDistributedMultivariatePolynomial
++ Also See: Polynomial
++ AMS Classifications:
++ Keywords: polynomial, multivariate, distributed
++ References:
++ Description:
++   This type supports distributed multivariate polynomials
++ whose variables are from a user specified list of symbols.
++ The coefficient ring may be non commutative,
++ but the variables are assumed to commute.
++ The term ordering is specified by its third parameter.
++ Suggested types which define term orderings include: \spadtype{DirectProduct},
++ \spadtype{HomogeneousDirectProduct}, \spadtype{SplitHomogeneousDirectProduct}
++ and finally \spadtype{OrderedDirectProduct} which accepts an arbitrary user
++ function to define a term ordering.

GeneralDistributedMultivariatePolynomial(vl,R,E): public == private where
  vl: List Symbol
  R: Ring
  E: DirectProductCategory(#vl,NonNegativeInteger)
  OV  ==> OrderedVariableList(vl)
  SUP ==> SparseUnivariatePolynomial
  NNI ==> NonNegativeInteger

  public == PolynomialCategory(R,E,OV) with
      reorder: (%,List Integer) -> %
        ++ reorder(p, perm) applies the permutation perm to the variables
        ++ in a polynomial and returns the new correctly ordered polynomial

  private == PolynomialRing(R,E) add
    --representations
      Term := Record(k:E,c:R)
      Rep := List Term
      n := #vl
      Vec ==> Vector(NonNegativeInteger)
      zero?(p : %): Boolean == null(p : Rep)

      totalDegree p ==
         zero? p => 0
         "max"/[reduce("+",(t.k)::(Vector NNI), 0) for t in p]

      monomial(p:%, v: OV,e: NonNegativeInteger):% ==
         locv := lookup v
         p*monomial(1,
            directProduct [if z=locv then e else 0 for z in 1..n]$Vec)

      coerce(v: OV):% == monomial(1,v,1)

      listCoef(p : %): List R ==
        rec : Term
        [rec.c for rec in (p:Rep)]

      mainVariable(p: %) ==
         zero?(p) => "failed"
         for v in vl repeat
           vv := variable(v)::OV
           if degree(p,vv)>0 then return vv
         "failed"

      ground?(p) == mainVariable(p) case "failed"

      retract(p : %): R ==
          not ground? p => error "not a constant"
          leadingCoefficient p

      retractIfCan(p : %): Union(R,"failed") ==
        ground?(p) => leadingCoefficient p
        "failed"

      degree(p: %,v: OV) == degree(univariate(p,v))
      minimumDegree(p: %,v: OV) == minimumDegree(univariate(p,v))
      differentiate(p: %,v: OV) ==
            multivariate(differentiate(univariate(p,v)),v)

      degree(p: %,lv: List OV) == [degree(p,v) for v in lv]
      minimumDegree(p: %,lv: List OV) == [minimumDegree(p,v) for v in lv]

      numberOfMonomials(p:%) ==
        l : Rep := p : Rep
        null(l) => 1
        #l

      monomial?(p : %): Boolean ==
        l : Rep := p : Rep
        null(l) or null rest(l)

      if R has OrderedRing then
        maxNorm(p : %): R ==
          l : List R := nil
          r,m : R
          m := 0
          for r in listCoef(p) repeat
            if r > m then m := r
            else if (-r) > m then m := -r
          m

      --trailingCoef(p : %) ==
      --  l : Rep := p : Rep
      --  null l => 0
      --  r : Term := last l
      --  r.c

      --leadingPrimitiveMonomial(p : %) ==
      --  ground?(p) => 1$%
      --  r : Term := first(p:Rep)
      --  r := [r.k,1$R]$Term     -- new cell
      -- list(r)$Rep :: %

    -- The following 2 defs are inherited from PolynomialRing

      --leadingMonomial(p : %) ==
      --  ground?(p) => p
      --  r : Term := first(p:Rep)
      --  r := [r.k,r.c]$Term     -- new cell
      --  list(r)$Rep :: %

      --reductum(p : %): % ==
      --  ground? p => 0$%
      --  (rest(p:Rep)):%

      if R has Field then
        (p : %) / (r : R) == inv(r) * p

      variables(p: %) ==
         maxdeg:Vector(NonNegativeInteger) := new(n,0)
         while not zero?(p) repeat
            tdeg := degree p
            p := reductum p
            for i in 1..n repeat
              maxdeg.i := max(maxdeg.i, tdeg.i)
         [index(i:PositiveInteger) for i in 1..n | maxdeg.i~=0]

      reorder(p: %,perm: List Integer):% ==
         #perm ~= n => error "must be a complete permutation of all vars"
         q := [[directProduct [term.k.j for j in perm]$Vec,term.c]$Term
                         for term in p]
         sort(#1.k > #2.k,q)

      --coerce(dp:DistributedMultivariatePolynomial(vl,R)):% ==
      --   q:=dp:List(Term)
      --   sort(#1.k > #2.k,q):%

      univariate(p: %,v: OV):SUP(%) ==
         zero?(p) => 0
         exp := degree p
         locv := lookup v
         deg:NonNegativeInteger := 0
         nexp := directProduct [if i=locv then (deg :=exp.i;0) else exp.i
                                        for i in 1..n]$Vec
         monomial(monomial(leadingCoefficient p,nexp),deg)+
                      univariate(reductum p,v)

      eval(p: %,v: OV,val:%):% == univariate(p,v)(val)

      eval(p: %,v: OV,val:R):% == eval(p,v,val::%)$%

      eval(p: %,lv: List OV,lval: List R):% ==
         lv = [] => p
         eval(eval(p,first lv,(first lval)::%)$%, rest lv, rest lval)$%

      -- assume Lvar are sorted correctly
      evalSortedVarlist(p: %,Lvar: List OV,Lpval: List %):% ==
        v := mainVariable p
        v case "failed" => p
        pv := v:: OV
        Lvar=[] or Lpval=[] => p
        mvar := Lvar.first
        mvar > pv => evalSortedVarlist(p,Lvar.rest,Lpval.rest)
        pval := Lpval.first
        pts:SUP(%):= map(evalSortedVarlist(#1,Lvar,Lpval),univariate(p,pv))
        mvar=pv => pts(pval)
        multivariate(pts,pv)

      eval(p:%,Lvar:List OV,Lpval:List %) ==
        nlvar:List OV := sort(#1 > #2,Lvar)
        nlpval :=
           Lvar = nlvar => Lpval
           nlpval := [Lpval.position(mvar,Lvar) for mvar in nlvar]
        evalSortedVarlist(p,nlvar,nlpval)

      multivariate(p1:SUP(%),v: OV):% ==
        0=p1 => 0
        degree p1 = 0 => leadingCoefficient p1
        leadingCoefficient(p1)*(v::%)**degree(p1) +
                  multivariate(reductum p1,v)

      univariate(p: %):SUP(R) ==
        (v := mainVariable p) case "failed" =>
                      monomial(leadingCoefficient p,0)
        q := univariate(p,v:: OV)
        ans:SUP(R) := 0
        while q ~= 0 repeat
          ans := ans + monomial(ground leadingCoefficient q,degree q)
          q := reductum q
        ans

      multivariate(p:SUP(R),v: OV):% ==
        0=p => 0
        (leadingCoefficient p)*monomial(1,v,degree p) +
                       multivariate(reductum p,v)

      if R has GcdDomain then
        content(p: %):R ==
          zero?(p) => 0
          "gcd"/[t.c for t in p]



        if R has EuclideanDomain and not(R has FloatingPointSystem)  then
          gcd(p: %,q:%):% ==
            gcd(p,q)$PolynomialGcdPackage(E,OV,R,%)

        else gcd(p: %,q:%):% ==
            r : R
            (pv := mainVariable(p)) case "failed" =>
              (r := leadingCoefficient p) = 0$R => q
              gcd(r,content q)::%
            (qv := mainVariable(q)) case "failed" =>
              (r := leadingCoefficient q) = 0$R => p
              gcd(r,content p)::%
            pv<qv => gcd(p,content univariate(q,qv))
            qv<pv => gcd(q,content univariate(p,pv))
            multivariate(gcd(univariate(p,pv),univariate(q,qv)),pv)

      coerce(p: %) : OutputForm ==
        zero?(p) => (0$R) :: OutputForm
        l,lt : List OutputForm
        lt := nil
        vl1 := [v::OutputForm for v in vl]
        for t in reverse p repeat
          l := nil
          for i in 1..#vl1 repeat
            t.k.i = 0 => "next"
            t.k.i = 1 => l := cons(vl1.i,l)
            l := cons(vl1.i ** t.k.i ::OutputForm,l)
          l := reverse l
          if (t.c ~= 1) or (null l) then l := cons(t.c :: OutputForm,l)
          1 = #l => lt := cons(first l,lt)
          lt := cons(reduce("*",l),lt)
        1 = #lt => first lt
        reduce("+",lt)

@
\section{domain DMP DistributedMultivariatePolynomial}
<<domain DMP DistributedMultivariatePolynomial>>=
)abbrev domain DMP DistributedMultivariatePolynomial
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, degree, eval, coefficient, monomial, differentiate,
++ resultant, gcd, leadingCoefficient
++ Related Constructors: GeneralDistributedMultivariatePolynomial,
++ HomogeneousDistributedMultivariatePolynomial
++ Also See: Polynomial
++ AMS Classifications:
++ Keywords: polynomial, multivariate, distributed
++ References:
++ Description:
++   This type supports distributed multivariate polynomials
++ whose variables are from a user specified list of symbols.
++ The coefficient ring may be non commutative,
++ but the variables are assumed to commute.
++ The term ordering is lexicographic specified by the variable
++ list parameter with the most significant variable first in the list.
DistributedMultivariatePolynomial(vl,R): public == private where
  vl : List Symbol
  R  : Ring
  E   ==> DirectProduct(#vl,NonNegativeInteger)
  OV  ==> OrderedVariableList(vl)
  public == PolynomialCategory(R,E,OV) with
      reorder: (%,List Integer) -> %
        ++ reorder(p, perm) applies the permutation perm to the variables
        ++ in a polynomial and returns the new correctly ordered polynomial

  private ==
    GeneralDistributedMultivariatePolynomial(vl,R,E)

@
\section{domain HDMP HomogeneousDistributedMultivariatePolynomial}
<<domain HDMP HomogeneousDistributedMultivariatePolynomial>>=
)abbrev domain HDMP HomogeneousDistributedMultivariatePolynomial
++ Author: Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: Ring, degree, eval, coefficient, monomial, differentiate,
++ resultant, gcd, leadingCoefficient
++ Related Constructors: DistributedMultivariatePolynomial,
++ GeneralDistributedMultivariatePolynomial
++ Also See: Polynomial
++ AMS Classifications:
++ Keywords: polynomial, multivariate, distributed
++ References:
++ Description:
++   This type supports distributed multivariate polynomials
++ whose variables are from a user specified list of symbols.
++ The coefficient ring may be non commutative,
++ but the variables are assumed to commute.
++ The term ordering is total degree ordering refined by reverse
++ lexicographic ordering with respect to the position that the variables
++ appear in the list of variables parameter.
HomogeneousDistributedMultivariatePolynomial(vl,R): public == private where
  vl : List Symbol
  R  : Ring
  E   ==> HomogeneousDirectProduct(#vl,NonNegativeInteger)
  OV  ==> OrderedVariableList(vl)
  public == PolynomialCategory(R,E,OV) with
      reorder: (%,List Integer) -> %
        ++ reorder(p, perm) applies the permutation perm to the variables
        ++ in a polynomial and returns the new correctly ordered polynomial
  private ==
    GeneralDistributedMultivariatePolynomial(vl,R,E)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain GDMP GeneralDistributedMultivariatePolynomial>>
<<domain DMP DistributedMultivariatePolynomial>>
<<domain HDMP HomogeneousDistributedMultivariatePolynomial>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}