1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra gbeuclid.spad}
\author{Rudiger Gebauer, Michael Moeller}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
--------- EUCLIDEAN GROEBNER BASIS PACKAGE ---------------
---------
---------- version 12.01.1986
---------
--------- Example to call euclideanGroebner:
---------
--------- a1:DMP[y,x]I:= (9*x**2 + 5*x - 3)+ y*(3*x**2 + 2*x + 1)
--------- a2:DMP[y,x]I:= (6*x**3 - 2*x**2 - 3*x +3) + y*(2*x**3 - x - 1)
--------- a3:DMP[y,x]I:= (3*x**3 + 2*x**2) + y*(x**3 + x**2)
---------
--------- an:=[a1,a2,a3]
---------
--------- euclideanGroebner(an,info)
---------
-------------------------------------------------------------------------
---------
--------- euclideanGroebner -> calculate weak euclGbasis
---------
--------- all reductions are TOTAL reductions
---------
--------- use string " redcrit " and you get the reduced critpairs
--------- printed
---------
--------- use string " info " and you get information about
---------
--------- ci => Leading monomial for critpair calculation
--------- tci => Number of terms of polynomial i
--------- cj => Leading monomial for critpair calculation
--------- tcj => Number of terms of polynomial j
--------- c => Leading monomial of critpair polynomial
--------- tc => Number of terms of critpair polynomial
--------- rc => Leading monomial of redcritpair polynomial
--------- trc => Number of terms of redcritpair polynomial
--------- tH => Number of polynomials in reduction list H
--------- tD => Number of critpairs still to do
---------
\end{verbatim}
\section{package GBEUCLID EuclideanGroebnerBasisPackage}
<<package GBEUCLID EuclideanGroebnerBasisPackage>>=
)abbrev package GBEUCLID EuclideanGroebnerBasisPackage
++ Authors: Gebauer, Moeller
++ Date Created: 12-1-86
++ Date Last Updated: 2-28-91
++ Basic Functions:
++ Related Constructors: Ideal, IdealDecompositionPackage, GroebnerPackage
++ Also See:
++ AMS Classifications:
++ Keywords: groebner basis, polynomial ideal, euclidean domain
++ References:
++ Description: \spadtype{EuclideanGroebnerBasisPackage} computes groebner
++ bases for polynomial ideals over euclidean domains.
++ The basic computation provides
++ a distinguished set of generators for these ideals.
++ This basis allows an easy test for membership: the operation
++ \spadfun{euclideanNormalForm} returns zero on ideal members. The string
++ "info" and "redcrit" can be given as additional args to provide
++ incremental information during the computation. If "info" is given,
++ a computational summary is given for each s-polynomial. If "redcrit"
++ is given, the reduced critical pairs are printed. The term ordering
++ is determined by the polynomial type used. Suggested types include
++ \spadtype{DistributedMultivariatePolynomial},
++ \spadtype{HomogeneousDistributedMultivariatePolynomial},
++ \spadtype{GeneralDistributedMultivariatePolynomial}.
EuclideanGroebnerBasisPackage(Dom, Expon, VarSet, Dpol): T == C where
Dom: EuclideanDomain
Expon: OrderedAbelianMonoidSup
VarSet: OrderedSet
Dpol: PolynomialCategory(Dom, Expon, VarSet)
T== with
euclideanNormalForm: (Dpol, List(Dpol) ) -> Dpol
++ euclideanNormalForm(poly,gb) reduces the polynomial poly modulo the
++ precomputed groebner basis gb giving a canonical representative
++ of the residue class.
euclideanGroebner: List(Dpol) -> List(Dpol)
++ euclideanGroebner(lp) computes a groebner basis for a polynomial ideal
++ over a euclidean domain generated by the list of polynomials lp.
euclideanGroebner: (List(Dpol), String) -> List(Dpol)
++ euclideanGroebner(lp, infoflag) computes a groebner basis
++ for a polynomial ideal over a euclidean domain
++ generated by the list of polynomials lp.
++ During computation, additional information is printed out
++ if infoflag is given as
++ either "info" (for summary information) or
++ "redcrit" (for reduced critical pairs)
euclideanGroebner: (List(Dpol), String, String ) -> List(Dpol)
++ euclideanGroebner(lp, "info", "redcrit") computes a groebner basis
++ for a polynomial ideal generated by the list of polynomials lp.
++ If the second argument is "info", a summary is given of the critical pairs.
++ If the third argument is "redcrit", critical pairs are printed.
C== add
Ex ==> OutputForm
lc ==> leadingCoefficient
red ==> reductum
import OutputForm
------ Definition list of critPair
------ lcmfij is now lcm of headterm of poli and polj
------ lcmcij is now lcm of of lc poli and lc polj
critPair ==>Record(lcmfij: Expon, lcmcij: Dom, poli:Dpol, polj: Dpol )
Prinp ==> Record( ci:Dpol,tci:Integer,cj:Dpol,tcj:Integer,c:Dpol,
tc:Integer,rc:Dpol,trc:Integer,tH:Integer,tD:Integer)
------ Definition of intermediate functions
strongGbasis: (List(Dpol), Integer, Integer) -> List(Dpol)
eminGbasis: List(Dpol) -> List(Dpol)
ecritT: (critPair ) -> Boolean
ecritM: (Expon, Dom, Expon, Dom) -> Boolean
ecritB: (Expon, Dom, Expon, Dom, Expon, Dom) -> Boolean
ecrithinH: (Dpol, List(Dpol)) -> Boolean
ecritBonD: (Dpol, List(critPair)) -> List(critPair)
ecritMTondd1:(List(critPair)) -> List(critPair)
ecritMondd1:(Expon, Dom, List(critPair)) -> List(critPair)
crithdelH: (Dpol, List(Dpol)) -> List(Dpol)
eupdatF: (Dpol, List(Dpol) ) -> List(Dpol)
updatH: (Dpol, List(Dpol), List(Dpol), List(Dpol) ) -> List(Dpol)
sortin: (Dpol, List(Dpol) ) -> List(Dpol)
eRed: (Dpol, List(Dpol), List(Dpol) ) -> Dpol
ecredPol: (Dpol, List(Dpol) ) -> Dpol
esPol: (critPair) -> Dpol
updatD: (List(critPair), List(critPair)) -> List(critPair)
lepol: Dpol -> Integer
prinshINFO : Dpol -> Void
prindINFO: (critPair, Dpol, Dpol,Integer,Integer,Integer) -> Integer
prinpolINFO: List(Dpol) -> Void
prinb: Integer -> Void
------ MAIN ALGORITHM GROEBNER ------------------------
euclideanGroebner( Pol: List(Dpol) ) ==
eminGbasis(strongGbasis(Pol,0,0))
euclideanGroebner( Pol: List(Dpol), xx1: String) ==
xx1 = "redcrit" =>
eminGbasis(strongGbasis(Pol,1,0))
xx1 = "info" =>
eminGbasis(strongGbasis(Pol,2,1))
print(" "::Ex)
print("WARNING: options are - redcrit and/or info - "::Ex)
print(" you didn't type them correct"::Ex)
print(" please try again"::Ex)
print(" "::Ex)
[]
euclideanGroebner( Pol: List(Dpol), xx1: String, xx2: String) ==
(xx1 = "redcrit" and xx2 = "info") or
(xx1 = "info" and xx2 = "redcrit") =>
eminGbasis(strongGbasis(Pol,1,1))
xx1 = "redcrit" and xx2 = "redcrit" =>
eminGbasis(strongGbasis(Pol,1,0))
xx1 = "info" and xx2 = "info" =>
eminGbasis(strongGbasis(Pol,2,1))
print(" "::Ex)
print("WARNING: options are - redcrit and/or info - "::Ex)
print(" you didn't type them correct"::Ex)
print(" please try again "::Ex)
print(" "::Ex)
[]
------ calculate basis
strongGbasis(Pol: List(Dpol),xx1: Integer, xx2: Integer ) ==
dd1, D : List(critPair)
--------- create D and Pol
Pol1:= sort( (degree #1 > degree #2) or
((degree #1 = degree #2 ) and
sizeLess?(leadingCoefficient #2,leadingCoefficient #1)),
Pol)
Pol:= [first(Pol1)]
H:= Pol
Pol1:= rest(Pol1)
D:= nil
while not null Pol1 repeat
h:= first(Pol1)
Pol1:= rest(Pol1)
en:= degree(h)
lch:= lc h
dd1:= [[sup(degree(x), en), lcm(leadingCoefficient x, lch), x, h]$critPair
for x in Pol]
D:= updatD(ecritMTondd1(sort((#1.lcmfij < #2.lcmfij) or
(( #1.lcmfij = #2.lcmfij ) and
( sizeLess?(#1.lcmcij,#2.lcmcij)) ),
dd1)), ecritBonD(h,D))
Pol:= cons(h, eupdatF(h, Pol))
((en = degree(first(H))) and (leadingCoefficient(h) = leadingCoefficient(first(H)) ) ) =>
" go to top of while "
H:= updatH(h,H,crithdelH(h,H),[h])
H:= sort((degree #1 > degree #2) or
((degree #1 = degree #2 ) and
sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), H)
D:= sort((#1.lcmfij < #2.lcmfij) or
(( #1.lcmfij = #2.lcmfij ) and
( sizeLess?(#1.lcmcij,#2.lcmcij)) ) ,D)
xx:= xx2
-------- loop
while not null D repeat
D0:= first D
ep:=esPol(D0)
D:= rest(D)
eh:= ecredPol(eRed(ep,H,H),H)
if xx1 = 1 then
prinshINFO(eh)
eh = 0 =>
if xx2 = 1 then
ala:= prindINFO(D0,ep,eh,#H, #D, xx)
xx:= 2
" go to top of while "
eh := unitCanonical eh
e:= degree(eh)
leh:= lc eh
dd1:= [[sup(degree(x), e), lcm(leadingCoefficient x, leh), x, eh]$critPair
for x in Pol]
D:= updatD(ecritMTondd1(sort( (#1.lcmfij <
#2.lcmfij) or (( #1.lcmfij = #2.lcmfij ) and
( sizeLess?(#1.lcmcij,#2.lcmcij)) ), dd1)), ecritBonD(eh,D))
Pol:= cons(eh,eupdatF(eh,Pol))
not ecrithinH(eh,H) or
((e = degree(first(H))) and (leadingCoefficient(eh) = leadingCoefficient(first(H)) ) ) =>
if xx2 = 1 then
ala:= prindINFO(D0,ep,eh,#H, #D, xx)
xx:= 2
" go to top of while "
H:= updatH(eh,H,crithdelH(eh,H),[eh])
H:= sort( (degree #1 > degree #2) or
((degree #1 = degree #2 ) and
sizeLess?(leadingCoefficient #2,leadingCoefficient #1)), H)
if xx2 = 1 then
ala:= prindINFO(D0,ep,eh,#H, #D, xx)
xx:= 2
" go to top of while "
if xx2 = 1 then
prinpolINFO(Pol)
print(" THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex)
if xx1 = 1 and not one? xx2 then
print(" THE GROEBNER BASIS over EUCLIDEAN DOMAIN"::Ex)
H
--------------------------------------
--- erase multiple of e in D2 using crit M
ecritMondd1(e: Expon, c: Dom, D2: List(critPair))==
null D2 => nil
x:= first(D2)
ecritM(e,c, x.lcmfij, lcm(leadingCoefficient(x.poli), leadingCoefficient(x.polj)))
=> ecritMondd1(e, c, rest(D2))
cons(x, ecritMondd1(e, c, rest(D2)))
-------------------------------
ecredPol(h: Dpol, F: List(Dpol) ) ==
h0:Dpol:= 0
null F => h
while h ~= 0 repeat
h0:= h0 + monomial(leadingCoefficient(h),degree(h))
h:= eRed(red(h), F, F)
h0
----------------------------
--- reduce dd1 using crit T and crit M
ecritMTondd1(dd1: List(critPair))==
null dd1 => nil
f1:= first(dd1)
s1:= #(dd1)
cT1:= ecritT(f1)
s1= 1 and cT1 => nil
s1= 1 => dd1
e1:= f1.lcmfij
r1:= rest(dd1)
f2:= first(r1)
e1 = f2.lcmfij and f1.lcmcij = f2.lcmcij =>
cT1 => ecritMTondd1(cons(f1, rest(r1)))
ecritMTondd1(r1)
dd1 := ecritMondd1(e1, f1.lcmcij, r1)
cT1 => ecritMTondd1(dd1)
cons(f1, ecritMTondd1(dd1))
-----------------------------
--- erase elements in D fullfilling crit B
ecritBonD(h:Dpol, D: List(critPair))==
null D => nil
x:= first(D)
x1:= x.poli
x2:= x.polj
ecritB(degree(h), leadingCoefficient(h), degree(x1),leadingCoefficient(x1),degree(x2),leadingCoefficient(x2)) =>
ecritBonD(h, rest(D))
cons(x, ecritBonD(h, rest(D)))
-----------------------------
--- concat F and h and erase multiples of h in F
eupdatF(h: Dpol, F: List(Dpol)) ==
null F => nil
f1:= first(F)
ecritM(degree h, leadingCoefficient(h), degree f1, leadingCoefficient(f1))
=> eupdatF(h, rest(F))
cons(f1, eupdatF(h, rest(F)))
-----------------------------
--- concat H and h and erase multiples of h in H
updatH(h: Dpol, H: List(Dpol), Hh: List(Dpol), Hhh: List(Dpol)) ==
null H => append(Hh,Hhh)
h1:= first(H)
hlcm:= sup(degree(h1), degree(h))
plc:= extendedEuclidean(leadingCoefficient(h), leadingCoefficient(h1))
hp:= monomial(plc.coef1,subtractIfCan(hlcm, degree(h))::Expon)*h +
monomial(plc.coef2,subtractIfCan(hlcm, degree(h1))::Expon)*h1
(ecrithinH(hp, Hh) and ecrithinH(hp, Hhh)) =>
hpp:= append(rest(H),Hh)
hp:= ecredPol(eRed(hp,hpp,hpp),hpp)
updatH(h, rest(H), crithdelH(hp,Hh),cons(hp,crithdelH(hp,Hhh)))
updatH(h, rest(H), Hh,Hhh)
--------------------------------------------------
---- delete elements in cons(h,H)
crithdelH(h: Dpol, H: List(Dpol))==
null H => nil
h1:= first(H)
dh1:= degree h1
dh:= degree h
ecritM(dh, lc h, dh1, lc h1) => crithdelH(h, rest(H))
dh1 = sup(dh,dh1) =>
plc:= extendedEuclidean( lc h1, lc h)
cons(plc.coef1*h1 + monomial(plc.coef2,subtractIfCan(dh1,dh)::Expon)*h,
crithdelH(h,rest(H)))
cons(h1, crithdelH(h,rest(H)))
eminGbasis(F: List(Dpol)) ==
null F => nil
newbas := eminGbasis rest F
cons(ecredPol( first(F), newbas),newbas)
------------------------------------------------
--- does h belong to H
ecrithinH(h: Dpol, H: List(Dpol))==
null H => true
h1:= first(H)
ecritM(degree h1, lc h1, degree h, lc h) => false
ecrithinH(h, rest(H))
-----------------------------
--- calculate euclidean S-polynomial of a critical pair
esPol(p:critPair)==
Tij := p.lcmfij
fi := p.poli
fj := p.polj
lij:= lcm(leadingCoefficient(fi), leadingCoefficient(fj))
red(fi)*monomial((lij exquo leadingCoefficient(fi))::Dom,
subtractIfCan(Tij, degree fi)::Expon) -
red(fj)*monomial((lij exquo leadingCoefficient(fj))::Dom,
subtractIfCan(Tij, degree fj)::Expon)
----------------------------
--- euclidean reduction mod F
eRed(s: Dpol, H: List(Dpol), Hh: List(Dpol)) ==
( s = 0 or null H ) => s
f1:= first(H)
ds:= degree s
lf1:= leadingCoefficient(f1)
ls:= leadingCoefficient(s)
e: Union(Expon, "failed")
(((e:= subtractIfCan(ds, degree f1)) case "failed" ) or sizeLess?(ls, lf1) ) =>
eRed(s, rest(H), Hh)
sdf1:= divide(ls, lf1)
q1:= sdf1.quotient
sdf1.remainder = 0 =>
eRed(red(s) - monomial(q1,e)*reductum(f1), Hh, Hh)
eRed(s -(monomial(q1, e)*f1), rest(H), Hh)
----------------------------
--- crit T true, if e1 and e2 are disjoint
ecritT(p: critPair) ==
pi:= p.poli
pj:= p.polj
ci:= lc pi
cj:= lc pj
(p.lcmfij = degree pi + degree pj) and (p.lcmcij = ci*cj)
----------------------------
--- crit M - true, if lcm#2 multiple of lcm#1
ecritM(e1: Expon, c1: Dom, e2: Expon, c2: Dom) ==
en: Union(Expon, "failed")
((en:=subtractIfCan(e2, e1)) case "failed") or
((c2 exquo c1) case "failed") => false
true
----------------------------
--- crit B - true, if eik is a multiple of eh and eik not equal
--- lcm(eh,ei) and eik not equal lcm(eh,ek)
ecritB(eh:Expon, ch: Dom, ei:Expon, ci: Dom, ek:Expon, ck: Dom) ==
eik:= sup(ei, ek)
cik:= lcm(ci, ck)
ecritM(eh, ch, eik, cik) and
not ecritM(eik, cik, sup(ei, eh), lcm(ci, ch)) and
not ecritM(eik, cik, sup(ek, eh), lcm(ck, ch))
-------------------------------
--- reduce p1 mod lp
euclideanNormalForm(p1: Dpol, lp: List(Dpol))==
eRed(p1, lp, lp)
---------------------------------
--- insert element in sorted list
sortin(p1: Dpol, lp: List(Dpol))==
null lp => [p1]
f1:= first(lp)
elf1:= degree(f1)
ep1:= degree(p1)
((elf1 < ep1) or ((elf1 = ep1) and
sizeLess?(leadingCoefficient(f1),leadingCoefficient(p1)))) =>
cons(f1,sortin(p1, rest(lp)))
cons(p1,lp)
updatD(D1: List(critPair), D2: List(critPair)) ==
null D1 => D2
null D2 => D1
dl1:= first(D1)
dl2:= first(D2)
(dl1.lcmfij < dl2.lcmfij) => cons(dl1, updatD(D1.rest, D2))
cons(dl2, updatD(D1, D2.rest))
---- calculate number of terms of polynomial
lepol(p1:Dpol)==
n: Integer
n:= 0
while p1 ~= 0 repeat
n:= n + 1
p1:= red(p1)
n
---- print blanc lines
prinb(n: Integer)==
for i in 1..n repeat messagePrint(" ")
---- print reduced critpair polynom
prinshINFO(h: Dpol)==
prinb(2)
messagePrint(" reduced Critpair - Polynom :")
prinb(2)
print(h::Ex)
prinb(2)
-------------------------------
---- print info string
prindINFO(cp: critPair, ps: Dpol, ph: Dpol, i1:Integer,
i2:Integer, n:Integer) ==
ll: List Prinp
a: Dom
cpi:= cp.poli
cpj:= cp.polj
if n = 1 then
prinb(1)
messagePrint("you choose option -info- ")
messagePrint("abbrev. for the following information strings are")
messagePrint(" ci => Leading monomial for critpair calculation")
messagePrint(" tci => Number of terms of polynomial i")
messagePrint(" cj => Leading monomial for critpair calculation")
messagePrint(" tcj => Number of terms of polynomial j")
messagePrint(" c => Leading monomial of critpair polynomial")
messagePrint(" tc => Number of terms of critpair polynomial")
messagePrint(" rc => Leading monomial of redcritpair polynomial")
messagePrint(" trc => Number of terms of redcritpair polynomial")
messagePrint(" tF => Number of polynomials in reduction list F")
messagePrint(" tD => Number of critpairs still to do")
prinb(4)
n:= 2
prinb(1)
a:= 1
ph = 0 =>
ps = 0 =>
ll:= [[monomial(a,degree(cpi)),lepol(cpi),monomial(a,degree(cpj)),
lepol(cpj),ps,0,ph,0,i1,i2]$Prinp]
print(ll::Ex)
prinb(1)
n
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
lepol(ps), ph,0,i1,i2]$Prinp]
print(ll::Ex)
prinb(1)
n
ll:= [[monomial(a,degree(cpi)),lepol(cpi),
monomial(a,degree(cpj)),lepol(cpj),monomial(a,degree(ps)),
lepol(ps),monomial(a,degree(ph)),lepol(ph),i1,i2]$Prinp]
print(ll::Ex)
prinb(1)
n
-------------------------------
---- print the groebner basis polynomials
prinpolINFO(pl: List(Dpol))==
n:Integer
n:= #pl
prinb(1)
n = 1 =>
print(" There is 1 Groebner Basis Polynomial "::Ex)
prinb(2)
print(" There are "::Ex)
prinb(1)
print(n::Ex)
prinb(1)
print(" Groebner Basis Polynomials. "::Ex)
prinb(2)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package GBEUCLID EuclideanGroebnerBasisPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|