1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra gaussian.spad}
\author{Barry Trager, James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category COMPCAT ComplexCategory}
<<category COMPCAT ComplexCategory>>=
)abbrev category COMPCAT ComplexCategory
++ Author:
++ Date Created:
++ Date Last Updated: 18 March 1994
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex, gaussian
++ References:
++ Description:
++ This category represents the extension of a ring by a square
++ root of -1.
ComplexCategory(R:CommutativeRing): Category ==
Join(MonogenicAlgebra(R, SparseUnivariatePolynomial R), FullyRetractableTo R,
DifferentialExtension R, FullyEvalableOver R, FullyPatternMatchable(R),
Patternable(R), FullyLinearlyExplicitRingOver R, CommutativeRing) with
complex ++ indicates that % has sqrt(-1)
imaginary: () -> % ++ imaginary() = sqrt(-1) = %i.
conjugate: % -> % ++ conjugate(x + %i y) returns x - %i y.
complex : (R, R) -> % ++ complex(x,y) constructs x + %i*y.
imag : % -> R ++ imag(x) returns imaginary part of x.
real : % -> R ++ real(x) returns real part of x.
norm : % -> R ++ norm(x) returns x * conjugate(x)
if R has IntegralDomain then
IntegralDomain
exquo : (%,R) -> Union(%,"failed")
++ exquo(x, r) returns the exact quotient of x by r, or
++ "failed" if r does not divide x exactly.
if R has EuclideanDomain then EuclideanDomain
if R has multiplicativeValuation then multiplicativeValuation
if R has additiveValuation then additiveValuation
if R has Field then -- this is a lie; we must know that
Field -- x**2+1 is irreducible in R
if R has ConvertibleTo InputForm then ConvertibleTo InputForm
if R has CharacteristicZero then CharacteristicZero
if R has CharacteristicNonZero then CharacteristicNonZero
if R has RealConstant then
ConvertibleTo Complex DoubleFloat
ConvertibleTo Complex Float
if R has RealNumberSystem then
abs: % -> %
++ abs(x) returns the absolute value of x = sqrt(norm(x)).
if R has TranscendentalFunctionCategory then
TranscendentalFunctionCategory
argument: % -> R ++ argument(x) returns the angle made by (0,1) and (0,x).
if R has RadicalCategory then RadicalCategory
if R has RealNumberSystem then
polarCoordinates: % -> Record(r:R, phi:R)
++ polarCoordinates(x) returns (r, phi) such that x = r * exp(%i * phi).
if R has IntegerNumberSystem then
rational? : % -> Boolean
++ rational?(x) tests if x is a rational number.
rational : % -> Fraction Integer
++ rational(x) returns x as a rational number.
++ Error: if x is not a rational number.
rationalIfCan: % -> Union(Fraction Integer, "failed")
++ rationalIfCan(x) returns x as a rational number, or
++ "failed" if x is not a rational number.
if R has PolynomialFactorizationExplicit and R has EuclideanDomain then
PolynomialFactorizationExplicit
add
import MatrixCategoryFunctions2(%, Vector %, Vector %, Matrix %,
R, Vector R, Vector R, Matrix R)
SUP ==> SparseUnivariatePolynomial
before?(x,y) ==
real x = real y => before?(imag x,imag y)
before?(real x,real y)
characteristicPolynomial x ==
v := monomial(1,1)$SUP(R)
v**2 - trace(x)*v**1 + norm(x)*v**0
if R has PolynomialFactorizationExplicit and R has EuclideanDomain then
SupR ==> SparseUnivariatePolynomial R
Sup ==> SparseUnivariatePolynomial %
import FactoredFunctionUtilities Sup
import UnivariatePolynomialCategoryFunctions2(R,SupR,%,Sup)
import UnivariatePolynomialCategoryFunctions2(%,Sup,R,SupR)
pp,qq:Sup
if R has IntegerNumberSystem then
myNextPrime: (%,NonNegativeInteger) -> %
myNextPrime(x,n ) == -- prime is actually in R, and = 3(mod 4)
xr:=real(x)-4::R
while not prime? xr repeat
xr:=xr-4::R
complex(xr,0)
--!TT:=InnerModularGcd(%,Sup,32719 :: %,myNextPrime)
--!gcdPolynomial(pp,qq) == modularGcd(pp,qq)$TT
solveLinearPolynomialEquation(lp:List Sup,p:Sup) ==
solveLinearPolynomialEquation(lp,p)$ComplexIntegerSolveLinearPolynomialEquation(R,%)
normPolynomial: Sup -> SupR
normPolynomial pp ==
map(retract(#1@%)::R,pp * map(conjugate,pp))
factorPolynomial pp ==
refine(squareFree pp,factorSquareFreePolynomial)
factorSquareFreePolynomial pp ==
pnorm:=normPolynomial pp
k:R:=0
while degree gcd(pnorm,differentiate pnorm)>0 repeat
k:=k+1
pnorm:=normPolynomial
elt(pp,monomial(1,1)-monomial(complex(0,k),0))
fR:=factorSquareFreePolynomial pnorm
numberOfFactors fR = 1 =>
makeFR(1,[["irred",pp,1]])
lF:List Record(flg:Union("nil", "sqfr", "irred", "prime"),
fctr:Sup, xpnt:Integer):=[]
for u in factorList fR repeat
p1:=map((#1@R)::%,u.fctr)
if not zero? k then
p1:=elt(p1,monomial(1,1)+monomial(complex(0,k),0))
p2:=gcd(p1,pp)
lF:=cons(["irred",p2,1],lF)
pp:=(pp exquo p2)::Sup
makeFR(pp,lF)
rank() == 2
discriminant() == -4 :: R
norm x == real(x)**2 + imag(x)**2
trace x == 2 * real x
imaginary() == complex(0, 1)
conjugate x == complex(real x, - imag x)
characteristic == characteristic$R
map(fn, x) == complex(fn real x, fn imag x)
x = y == real(x) = real(y) and imag(x) = imag(y)
x + y == complex(real x + real y, imag x + imag y)
- x == complex(- real x, - imag x)
r:R * x:% == complex(r * real x, r * imag x)
coordinates(x:%) == [real x, imag x]
n:Integer * x:% == complex(n * real x, n * imag x)
differentiate(x:%, d:R -> R) == complex(d real x, d imag x)
definingPolynomial() ==
monomial(1,2)$(SUP R) + monomial(1,0)$(SUP R)
reduce(pol:SUP R) ==
part:= (monicDivide(pol,definingPolynomial())).remainder
complex(coefficient(part,0),coefficient(part,1))
lift(x) == monomial(real x,0)$(SUP R)+monomial(imag x,1)$(SUP R)
minimalPolynomial x ==
zero? imag x =>
monomial(1, 1)$(SUP R) - monomial(real x, 0)$(SUP R)
monomial(1, 2)$(SUP R) - monomial(trace x, 1)$(SUP R)
+ monomial(norm x, 0)$(SUP R)
coordinates(x:%, v:Vector %):Vector(R) ==
ra := real(a := v(minIndex v))
rb := real(b := v(maxIndex v))
(#v ~= 2) or
((d := recip(ra * (ib := imag b) - (ia := imag a) * rb))
case "failed") =>error "coordinates: vector is not a basis"
rx := real x
ix := imag x
[d::R * (rx * ib - ix * rb), d::R * (ra * ix - ia * rx)]
coerce(x:%):OutputForm ==
re := (r := real x)::OutputForm
ie := (i := imag x)::OutputForm
zero? i => re
outi := '%i::OutputForm
ip :=
one? i => outi
one?(-i) => -outi
ie * outi
zero? r => ip
re + ip
retract(x:%):R ==
not zero?(imag x) =>
error "Imaginary part is nonzero. Cannot retract."
real x
retractIfCan(x:%):Union(R, "failed") ==
not zero?(imag x) => "failed"
real x
x:% * y:% ==
complex(real x * real y - imag x * imag y,
imag x * real y + imag y * real x)
reducedSystem(m:Matrix %):Matrix R ==
vertConcat(map(real, m), map(imag, m))
reducedSystem(m:Matrix %, v:Vector %):
Record(mat:Matrix R, vec:Vector R) ==
rh := reducedSystem(v::Matrix %)@Matrix(R)
[reducedSystem(m)@Matrix(R), column(rh, minColIndex rh)]
if R has RealNumberSystem then
abs(x:%):% == (sqrt norm x)::%
if R has RealConstant then
convert(x:%):Complex(DoubleFloat) ==
complex(convert(real x)@DoubleFloat,convert(imag x)@DoubleFloat)
convert(x:%):Complex(Float) ==
complex(convert(real x)@Float, convert(imag x)@Float)
if R has ConvertibleTo InputForm then
convert(x:%):InputForm ==
convert([convert('complex), convert real x,
convert imag x]$List(InputForm))@InputForm
if R has ConvertibleTo Pattern Integer then
convert(x:%):Pattern Integer ==
convert(x)$ComplexPattern(Integer, R, %)
if R has ConvertibleTo Pattern Float then
convert(x:%):Pattern Float ==
convert(x)$ComplexPattern(Float, R, %)
if R has PatternMatchable Integer then
patternMatch(x:%, p:Pattern Integer,
l:PatternMatchResult(Integer, %)) ==
patternMatch(x, p, l)$ComplexPatternMatch(Integer, R, %)
if R has PatternMatchable Float then
patternMatch(x:%, p:Pattern Float,
l:PatternMatchResult(Float, %)) ==
patternMatch(x, p, l)$ComplexPatternMatch(Float, R, %)
if R has IntegerNumberSystem then
rational? x == zero? imag x
rational x ==
zero? imag x => rational real x
error "Not a rational number"
rationalIfCan x ==
zero? imag x => rational real x
"failed"
if R has Field then
inv x ==
zero? imag x => (inv real x)::%
r := norm x
complex(real(x) / r, - imag(x) / r)
if R has IntegralDomain then
x:% exquo r:R ==
one? r => x
(r1 := real(x) exquo r) case "failed" => "failed"
(r2 := imag(x) exquo r) case "failed" => "failed"
complex(r1, r2)
x:% exquo y:% ==
zero? imag y => x exquo real y
x * conjugate(y) exquo norm(y)
recip(x:%) == 1 exquo x
if R has OrderedRing then
unitNormal x ==
zero? x => [1,x,1]
(u := recip x) case % => [x, 1, u]
zero? real x =>
c := unitNormal imag x
[complex(0, c.unit), (c.associate * imag x)::%,
complex(0, - c.associate)]
c := unitNormal real x
x := c.associate * x
imag x < 0 =>
x := complex(- imag x, real x)
[- c.unit * imaginary(), x, c.associate * imaginary()]
[c.unit ::%, x, c.associate ::%]
else
unitNormal x ==
zero? x => [1,x,1]
(u := recip x) case % => [x, 1, u]
zero? real x =>
c := unitNormal imag x
[complex(0, c.unit), (c.associate * imag x)::%,
complex(0, - c.associate)]
c := unitNormal real x
x := c.associate * x
[c.unit ::%, x, c.associate ::%]
if R has EuclideanDomain then
if R has additiveValuation then
euclideanSize x == max(euclideanSize real x,
euclideanSize imag x)
else
euclideanSize x == euclideanSize(real(x)**2 + imag(x)**2)$R
if R has IntegerNumberSystem then
x rem y ==
zero? imag y =>
yr:=real y
complex(symmetricRemainder(real(x), yr),
symmetricRemainder(imag(x), yr))
divide(x, y).remainder
x quo y ==
zero? imag y =>
yr:= real y
xr:= real x
xi:= imag x
complex((xr-symmetricRemainder(xr,yr)) quo yr,
(xi-symmetricRemainder(xi,yr)) quo yr)
divide(x, y).quotient
else
x rem y ==
zero? imag y =>
yr:=real y
complex(real(x) rem yr,imag(x) rem yr)
divide(x, y).remainder
x quo y ==
zero? imag y => complex(real x quo real y,imag x quo real y)
divide(x, y).quotient
divide(x, y) ==
r := norm y
y1 := conjugate y
xx := x * y1
x1 := real(xx) rem r
a := x1
if x1~=0 and sizeLess?(r, 2 * x1) then
a := x1 - r
if sizeLess?(x1, a) then a := x1 + r
x2 := imag(xx) rem r
b := x2
if x2~=0 and sizeLess?(r, 2 * x2) then
b := x2 - r
if sizeLess?(x2, b) then b := x2 + r
y1 := (complex(a, b) exquo y1)::%
[((x - y1) exquo y)::%, y1]
if R has TranscendentalFunctionCategory then
half := recip(2::R)::R
if R has RealNumberSystem then
atan2loc(y: R, x: R): R ==
pi1 := pi()$R
pi2 := pi1 * half
x = 0 => if y >= 0 then pi2 else -pi2
-- Atan in (-pi/2,pi/2]
theta := atan(y * recip(x)::R)
while theta <= -pi2 repeat theta := theta + pi1
while theta > pi2 repeat theta := theta - pi1
x >= 0 => theta -- I or IV
if y >= 0 then
theta + pi1 -- II
else
theta - pi1 -- III
argument x == atan2loc(imag x, real x)
else
if R has RadicalCategory then
argument x ==
n1 := sqrt(norm(x))
x1 := real(x) + n1
(2::R)*atan(imag(x) * recip(x1)::R)
else
-- Emulate sqrt using exp and log
argument x ==
n1 := exp(half*log(norm(x)))
x1 := real(x) + n1
(2::R)*atan(imag(x) * recip(x1)::R)
pi() == pi()$R :: %
if R is DoubleFloat then
stoc ==> S_-TO_-C$Lisp
ctos ==> C_-TO_-S$Lisp
exp x == ctos EXP(stoc x)$Lisp
log x == ctos LOG(stoc x)$Lisp
sin x == ctos SIN(stoc x)$Lisp
cos x == ctos COS(stoc x)$Lisp
tan x == ctos TAN(stoc x)$Lisp
asin x == ctos ASIN(stoc x)$Lisp
acos x == ctos ACOS(stoc x)$Lisp
atan x == ctos ATAN(stoc x)$Lisp
sinh x == ctos SINH(stoc x)$Lisp
cosh x == ctos COSH(stoc x)$Lisp
tanh x == ctos TANH(stoc x)$Lisp
asinh x == ctos ASINH(stoc x)$Lisp
acosh x == ctos ACOSH(stoc x)$Lisp
atanh x == ctos ATANH(stoc x)$Lisp
else
atan x ==
ix := imaginary()*x
- imaginary() * half * (log(1 + ix) - log(1 - ix))
log x ==
complex(log(norm x) * half, argument x)
exp x ==
e := exp real x
complex(e * cos imag x, e * sin imag x)
cos x ==
e := exp(imaginary() * x)
half * (e + recip(e)::%)
sin x ==
e := exp(imaginary() * x)
- imaginary() * half * (e - recip(e)::%)
if R has RealNumberSystem then
polarCoordinates x ==
[sqrt norm x, (negative?(t := argument x) => t + 2 * pi(); t)]
x:% ** q:Fraction(Integer) ==
zero? q =>
zero? x => error "0 ** 0 is undefined"
1
zero? x => 0
rx := real x
zero? imag x and positive? rx => (rx ** q)::%
zero? imag x and denom q = 2 => complex(0, (-rx)**q)
ax := sqrt(norm x) ** q
tx := q::R * argument x
complex(ax * cos tx, ax * sin tx)
else if R has RadicalCategory then
x:% ** q:Fraction(Integer) ==
zero? q =>
zero? x => error "0 ** 0 is undefined"
1
r := real x
zero?(i := imag x) => (r ** q)::%
t := numer(q) * recip(denom(q)::R)::R * argument x
e:R :=
zero? r => i ** q
norm(x) ** (q / (2::Fraction(Integer)))
complex(e * cos t, e * sin t)
@
\section{package COMPLPAT ComplexPattern}
<<package COMPLPAT ComplexPattern>>=
)abbrev package COMPLPAT ComplexPattern
++ Author: Barry Trager
++ Date Created: 30 Nov 1995
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex, patterns
++ References:
++ Description:
++ This package supports converting complex expressions to patterns
ComplexPattern(R, S, CS) : C == T where
R: SetCategory
S: Join(ConvertibleTo Pattern R, CommutativeRing)
CS: ComplexCategory S
C == with
convert: CS -> Pattern R
++ convert(cs) converts the complex expression cs to a pattern
T == add
ipat : Pattern R := patternVariable('%i, true, false, false)
convert(cs) ==
zero? imag cs => convert real cs
convert real cs + ipat * convert imag cs
@
\section{package CPMATCH ComplexPatternMatch}
<<package CPMATCH ComplexPatternMatch>>=
)abbrev package CPMATCH ComplexPatternMatch
++ Author: Barry Trager
++ Date Created: 30 Nov 1995
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex, pattern matching
++ References:
++ Description:
++ This package supports matching patterns involving complex expressions
ComplexPatternMatch(R, S, CS) : C == T where
R: SetCategory
S: Join(PatternMatchable R, CommutativeRing)
CS: ComplexCategory S
PMRS ==> PatternMatchResult(R, CS)
PS ==> Polynomial S
C == with
if PS has PatternMatchable(R) then
patternMatch: (CS, Pattern R, PMRS) -> PMRS
++ patternMatch(cexpr, pat, res) matches the pattern pat to the
++ complex expression cexpr. res contains the variables of pat
++ which are already matched and their matches.
T == add
import PatternMatchPushDown(R, S, CS)
import PatternMatchResultFunctions2(R, PS, CS)
import PatternMatchResultFunctions2(R, CS, PS)
ivar : PS := '%i::PS
makeComplex(p:PS):CS ==
up := univariate p
degree up > 1 => error "not linear in %i"
icoef:=leadingCoefficient(up)
rcoef:=leadingCoefficient(reductum p)
complex(rcoef,icoef)
makePoly(cs:CS):PS == real(cs)*ivar + imag(cs)::PS
if PS has PatternMatchable(R) then
patternMatch(cs, pat, result) ==
zero? imag cs =>
patternMatch(real cs, pat, result)
map(makeComplex,
patternMatch(makePoly cs, pat, map(makePoly, result)))
@
\section{domain COMPLEX Complex}
<<domain COMPLEX Complex>>=
)abbrev domain COMPLEX Complex
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ \spadtype {Complex(R)} creates the domain of elements of the form
++ \spad{a + b * i} where \spad{a} and b come from the ring R,
++ and i is a new element such that \spad{i**2 = -1}.
Complex(R:CommutativeRing): ComplexCategory(R) with
if R has OpenMath then OpenMath
== add
Rep := Record(real:R, imag:R)
if R has OpenMath then
writeOMComplex(dev: OpenMathDevice, x: %): Void ==
OMputApp(dev)
OMputSymbol(dev, "complex1", "complex__cartesian")
OMwrite(dev, real x)
OMwrite(dev, imag x)
OMputEndApp(dev)
OMwrite(x: %): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML())
OMputObject(dev)
writeOMComplex(dev, x)
OMputEndObject(dev)
OMclose(dev)
s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
s
OMwrite(x: %, wholeObj: Boolean): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML())
if wholeObj then
OMputObject(dev)
writeOMComplex(dev, x)
if wholeObj then
OMputEndObject(dev)
OMclose(dev)
s := OM_-STRINGPTRTOSTRING(sp)$Lisp pretend String
s
OMwrite(dev: OpenMathDevice, x: %): Void ==
OMputObject(dev)
writeOMComplex(dev, x)
OMputEndObject(dev)
OMwrite(dev: OpenMathDevice, x: %, wholeObj: Boolean): Void ==
if wholeObj then
OMputObject(dev)
writeOMComplex(dev, x)
if wholeObj then
OMputEndObject(dev)
0 == [0, 0]
1 == [1, 0]
zero? x == zero?(x.real) and zero?(x.imag)
one? x == one?(x.real) and zero?(x.imag)
coerce(r:R):% == [r, 0]
complex(r, i) == [r, i]
real x == x.real
imag x == x.imag
x + y == [x.real + y.real, x.imag + y.imag]
-- by re-defining this here, we save 5 fn calls
x:% * y:% ==
[x.real * y.real - x.imag * y.imag,
x.imag * y.real + y.imag * x.real] -- here we save nine!
if R has IntegralDomain then
x:% exquo y:% == -- to correct bad defaulting problem
zero? y.imag => x exquo y.real
x * conjugate(y) exquo norm(y)
@
\section{package COMPLEX2 ComplexFunctions2}
<<package COMPLEX2 ComplexFunctions2>>=
)abbrev package COMPLEX2 ComplexFunctions2
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package extends maps from underlying rings to maps between
++ complex over those rings.
ComplexFunctions2(R:CommutativeRing, S:CommutativeRing): with
map: (R -> S, Complex R) -> Complex S
++ map(f,u) maps f onto real and imaginary parts of u.
== add
map(fn, gr) == complex(fn real gr, fn imag gr)
@
\section{package COMPFACT ComplexFactorization}
<<package COMPFACT ComplexFactorization>>=
)abbrev package COMPFACT ComplexFactorization
++ Author:
++ Date Created:
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors: Complex, UnivariatePolynomial
++ Also See:
++ AMS Classifications:
++ Keywords: complex, polynomial factorization, factor
++ References:
ComplexFactorization(RR,PR) : C == T where
RR : EuclideanDomain -- R is Z or Q
PR : UnivariatePolynomialCategory Complex RR
R ==> Complex RR
I ==> Integer
RN ==> Fraction I
GI ==> Complex I
GRN ==> Complex RN
C == with
factor : PR -> Factored PR
++ factor(p) factorizes the polynomial p with complex coefficients.
T == add
SUP ==> SparseUnivariatePolynomial
fUnion ==> Union("nil", "sqfr", "irred", "prime")
FF ==> Record(flg:fUnion, fctr:PR, xpnt:Integer)
SAEF := SimpleAlgebraicExtensionAlgFactor(SUP RN,GRN,SUP GRN)
UPCF2 := UnivariatePolynomialCategoryFunctions2(R,PR,GRN,SUP GRN)
UPCFB := UnivariatePolynomialCategoryFunctions2(GRN,SUP GRN,R,PR)
myMap(r:R) : GRN ==
R is GI =>
cr :GI := r pretend GI
complex((real cr)::RN,(imag cr)::RN)
R is GRN => r pretend GRN
compND(cc:GRN):Record(cnum:GI,cden:Integer) ==
ccr:=real cc
cci:=imag cc
dccr:=denom ccr
dcci:=denom cci
ccd:=lcm(dccr,dcci)
[complex(((ccd exquo dccr)::Integer)*numer ccr,
((ccd exquo dcci)::Integer)*numer cci),ccd]
conv(f:SUP GRN) :Record(convP:SUP GI, convD:RN) ==
pris:SUP GI :=0
dris:Integer:=1
dris1:Integer:=1
pdris:Integer:=1
for i in 0..(degree f) repeat
(cf:= coefficient(f,i)) = 0 => "next i"
cdf:=compND cf
dris:=lcm(cdf.cden,dris1)
pris:=((dris exquo dris1)::Integer)*pris +
((dris exquo cdf.cden)::Integer)*
monomial(cdf.cnum,i)$(SUP GI)
dris1:=dris
[pris,dris::RN]
backConv(ffr:Factored SUP GRN) : Factored PR ==
R is GRN =>
makeFR((unit ffr) pretend PR,[[f.flg,(f.fctr) pretend PR,f.xpnt]
for f in factorList ffr])
R is GI =>
const:=unit ffr
ris: List FF :=[]
for ff in factorList ffr repeat
fact:=primitivePart(conv(ff.fctr).convP)
expf:=ff.xpnt
ris:=cons([ff.flg,fact pretend PR,expf],ris)
lc:GRN := myMap leadingCoefficient(fact pretend PR)
const:= const*(leadingCoefficient(ff.fctr)/lc)**expf
uconst:GI:= compND(coefficient(const,0)).cnum
makeFR((uconst pretend R)::PR,ris)
factor(pol : PR) : Factored PR ==
ratPol:SUP GRN := 0
ratPol:=map(myMap,pol)$UPCF2
ffr:=factor ratPol
backConv ffr
@
\section{package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation}
<<package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation>>=
)abbrev package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation
++ Author: James Davenport
++ Date Created: 1990
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package provides the generalized euclidean algorithm which is
++ needed as the basic step for factoring polynomials.
ComplexIntegerSolveLinearPolynomialEquation(R,CR): C == T
where
CP ==> SparseUnivariatePolynomial CR
R:IntegerNumberSystem
CR:ComplexCategory(R)
C == with
solveLinearPolynomialEquation: (List CP,CP) -> Union(List CP,"failed")
++ solveLinearPolynomialEquation([f1, ..., fn], g)
++ where (fi relatively prime to each other)
++ returns a list of ai such that
++ g = sum ai prod fj (j \= i) or
++ equivalently g/prod fj = sum (ai/fi)
++ or returns "failed" if no such list exists
T == add
oldlp:List CP := []
slpePrime:R:=(2::R)
oldtable:Vector List CP := empty()
solveLinearPolynomialEquation(lp,p) ==
if (oldlp ~= lp) then
-- we have to generate a new table
deg:= +/[degree u for u in lp]
ans:Union(Vector List CP,"failed"):="failed"
slpePrime:=67108859::R -- 2**26 -5 : a prime
-- a good test case for this package is
-- (good question?)
while (ans case "failed") repeat
ans:=tablePow(deg,complex(slpePrime,0),lp)$GenExEuclid(CR,CP)
if (ans case "failed") then
slpePrime:= slpePrime-4::R
while not prime?(slpePrime)$IntegerPrimesPackage(R) repeat
slpePrime:= slpePrime-4::R
oldtable:=(ans:: Vector List CP)
answer:=solveid(p,complex(slpePrime,0),oldtable)
answer
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category COMPCAT ComplexCategory>>
<<package COMPLPAT ComplexPattern>>
<<package CPMATCH ComplexPatternMatch>>
<<domain COMPLEX Complex>>
<<package COMPLEX2 ComplexFunctions2>>
<<package COMPFACT ComplexFactorization>>
<<package CINTSLPE ComplexIntegerSolveLinearPolynomialEquation>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|