aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/gaussfac.spad.pamphlet
blob: 660d9f4c40d43b454e4c6ed9f7ed53e1d2b8b795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra gaussfac.spad}
\author{Patrizia Gianni}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GAUSSFAC GaussianFactorizationPackage}
<<package GAUSSFAC GaussianFactorizationPackage>>=
)abbrev package GAUSSFAC GaussianFactorizationPackage
++ Author: Patrizia Gianni
++ Date Created: Summer 1986
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description: Package for the factorization of complex or gaussian
++ integers.
GaussianFactorizationPackage() : C == T
 where
  NNI  ==  NonNegativeInteger
  Z      ==> Integer
  ZI     ==> Complex Z
  FRZ    ==> Factored ZI
  fUnion ==> Union("nil", "sqfr", "irred", "prime")
  FFE    ==> Record(flg:fUnion, fctr:ZI, xpnt:Integer)

  C  == with
     factor      :     ZI     ->     FRZ
       ++ factor(zi) produces the complete factorization of the complex
       ++ integer zi.
     sumSquares  :     Z      ->    List Z
       ++ sumSquares(p) construct \spad{a} and b such that \spad{a**2+b**2}
       ++ is equal to
       ++ the integer prime p, and otherwise returns an error.
       ++ It will succeed if the prime number p is 2 or congruent to 1
       ++ mod 4.
     prime?      :     ZI     ->    Boolean
       ++ prime?(zi) tests if the complex integer zi is prime.

  T  == add
     import IntegerFactorizationPackage Z

     reduction(u:Z,p:Z):Z ==
       p=0 => u
       positiveRemainder(u,p)

     merge(p:Z,q:Z):Union(Z,"failed") ==
       p = q => p
       p = 0 => q
       q = 0 => p
       "failed"

     exactquo(u:Z,v:Z,p:Z):Union(Z,"failed") ==
        p=0 => u exquo v
        v rem p = 0 => "failed"
        positiveRemainder((extendedEuclidean(v,p,u)::Record(coef1:Z,coef2:Z)).coef1,p)

     FMod := ModularRing(Z,Z,reduction,merge,exactquo)

     fact2:ZI:= complex(1,1)

             ----  find the solution of x**2+1 mod q  ----
     findelt(q:Z) : Z ==
       q1:=q-1
       r:=q1
       r1:=r exquo 4
       while ^(r1 case "failed") repeat
         r:=r1::Z
         r1:=r exquo 2
       s : FMod := reduce(1,q)
       qq1:FMod :=reduce(q1,q)
       for i in 2.. while (s=1 or s=qq1) repeat
         s:=reduce(i,q)**(r::NNI)
       t:=s
       while t~=qq1 repeat
         s:=t
         t:=t**2
       s::Z


     ---- write p, congruent to 1 mod 4, as a sum of two squares ----
     sumsq1(p:Z) : List Z ==
       s:= findelt(p)
       u:=p
       while u**2>p repeat
         w:=u rem s
         u:=s
         s:=w
       [u,s]

            ---- factorization of an integer  ----
     intfactor(n:Z) : Factored ZI ==
       lfn:= factor n
       r : List FFE :=[]
       unity:ZI:=complex(unit lfn,0)
       for term in (factorList lfn) repeat
         n:=term.fctr
         exp:=term.xpnt
         n=2 =>
           r :=concat(["prime",fact2,2*exp]$FFE,r)
           unity:=unity*complex(0,-1)**(exp rem 4)::NNI

         (n rem 4) = 3 => r:=concat(["prime",complex(n,0),exp]$FFE,r)

         sz:=sumsq1(n)
         z:=complex(sz.1,sz.2)
         r:=concat(["prime",z,exp]$FFE,
                 concat(["prime",conjugate(z),exp]$FFE,r))
       makeFR(unity,r)

           ---- factorization of a gaussian number  ----
     factor(m:ZI) : FRZ ==
       m=0 => primeFactor(0,1)
       a:= real m

       (b:= imag m)=0 => intfactor(a) :: FRZ

       a=0 =>
         ris:=intfactor(b)
         unity:= unit(ris)*complex(0,1)
         makeFR(unity,factorList ris)

       d:=gcd(a,b)
       result : List FFE :=[]
       unity:ZI:=1$ZI

       if d~=1 then
         a:=(a exquo d)::Z
         b:=(b exquo d)::Z
         r:= intfactor(d)
         result:=factorList r
         unity:=unit r
         m:=complex(a,b)

       n:Z:=a**2+b**2
       factn:= factorList(factor n)
       part:FFE:=["prime",0$ZI,0]
       for term in factn repeat
         n:=term.fctr
         exp:=term.xpnt
         n=2 =>
           part:= ["prime",fact2,exp]$FFE
           m:=m quo (fact2**exp:NNI)
           result:=concat(part,result)

         (n rem 4) = 3 =>
           g0:=complex(n,0)
           part:= ["prime",g0,exp quo 2]$FFE
           m:=m quo g0
           result:=concat(part,result)

         z:=gcd(m,complex(n,0))
         part:= ["prime",z,exp]$FFE
         z:=z**(exp:NNI)
         m:=m quo z
         result:=concat(part,result)

       if m~=1 then unity:=unity * m
       makeFR(unity,result)

           ----  write p prime like sum of two squares  ----
     sumSquares(p:Z) : List Z ==
       p=2 => [1,1]
       p rem 4 ~= 1 => error "no solutions"
       sumsq1(p)


     prime?(a:ZI) : Boolean ==
        n : Z := norm a
        n=0 => false            -- zero
        n=1 => false            -- units
        prime?(n)$IntegerPrimesPackage(Z)  => true
        re : Z := real a
        im : Z := imag a
        re~=0 and im~=0 => false
        p : Z := abs(re+im)     -- a is of the form p, -p, %i*p or -%i*p
        p rem 4 ~= 3 => false
        -- return-value true, if p is a rational prime,
        -- and false, otherwise
        prime?(p)$IntegerPrimesPackage(Z)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package GAUSSFAC GaussianFactorizationPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}