1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra galpolyu.spad}
\author{Frederic Lehobey}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package GALPOLYU GaloisGroupPolynomialUtilities}
<<package GALPOLYU GaloisGroupPolynomialUtilities>>=
)abbrev package GALPOLYU GaloisGroupPolynomialUtilities
++ Author: Frederic Lehobey
++ Date Created: 30 June 1994
++ Date Last Updated: 15 July 1994
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description: \spadtype{GaloisGroupPolynomialUtilities} provides useful
++ functions for univariate polynomials which should be added to
++ \spadtype{UnivariatePolynomialCategory} or to \spadtype{Factored}
++ (July 1994).
GaloisGroupPolynomialUtilities(R,UP): Exports == Implementation where
R : Ring
UP : UnivariatePolynomialCategory R
N ==> NonNegativeInteger
P ==> PositiveInteger
Exports ==> with
monic?: UP -> Boolean
++ monic?(p) tests if p is monic (i.e. leading coefficient equal to 1).
unvectorise: Vector R -> UP
++ unvectorise(v) returns the polynomial which has for coefficients the
++ entries of v in the increasing order.
reverse: UP -> UP
++ reverse(p) returns the reverse polynomial of p.
scaleRoots: (UP,R) -> UP
++ scaleRoots(p,c) returns the polynomial which has c times the roots
++ of p.
shiftRoots: (UP,R) -> UP
++ shiftRoots(p,c) returns the polynomial which has for roots c added
++ to the roots of p.
degreePartition: Factored UP -> Multiset N
++ degreePartition(f) returns the degree partition (i.e. the multiset
++ of the degrees of the irreducible factors) of
++ the polynomial f.
factorOfDegree: (P, Factored UP) -> UP
++ factorOfDegree(d,f) returns a factor of degree d of the factored
++ polynomial f. Such a factor shall exist.
factorsOfDegree: (P, Factored UP) -> List UP
++ factorsOfDegree(d,f) returns the factors of degree d of the factored
++ polynomial f.
Implementation ==> add
import Factored UP
factorsOfDegree(d:P,r:Factored UP):List UP ==
lfact : List UP := empty()
for fr in factors r | degree(fr.factor)=(d::N) repeat
for i in 1..fr.exponent repeat
lfact := cons(fr.factor,lfact)
lfact
factorOfDegree(d:P,r:Factored UP):UP ==
factor : UP := 0
for i in 1..numberOfFactors r repeat
factor := nthFactor(r,i)
if degree(factor)=(d::N) then return factor
error "factorOfDegree: Bad arguments"
degreePartition(r:Factored UP):Multiset N ==
multiset([ degree(nthFactor(r,i)) for i in 1..numberOfFactors r ])
monic?(p:UP):Boolean == one? leadingCoefficient p
unvectorise(v:Vector R):UP ==
p : UP := 0
for i in 1..#v repeat p := p + monomial(v(i),(i-1)::N)
p
reverse(p:UP):UP ==
r : UP := 0
n := degree(p)
for i in 0..n repeat r := r + monomial(coefficient(p,(n-i)::N),i)
r
scaleRoots(p:UP,c:R):UP ==
one? c => p
n := degree p
zero? c => monomial(leadingCoefficient p,n)
r : UP := 0
mc : R := 1
for i in n..0 by -1 repeat
r := r + monomial(mc*coefficient(p,i),i)
mc := mc*c
r
import UnivariatePolynomialCategoryFunctions2(R,UP,UP,
SparseUnivariatePolynomial UP)
shiftRoots(p:UP,c:R):UP == elt(map(coerce,p),monomial(1,1)$UP-c::UP)::UP
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package GALPOLYU GaloisGroupPolynomialUtilities>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|