1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra free.spad}
\author{Manuel Bronstein, Stephen M. Watt}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain LMOPS ListMonoidOps}
<<domain LMOPS ListMonoidOps>>=
)abbrev domain LMOPS ListMonoidOps
++ Internal representation for monoids
++ Author: Manuel Bronstein
++ Date Created: November 1989
++ Date Last Updated: 6 June 1991
++ Description:
++ This internal package represents monoid (abelian or not, with or
++ without inverses) as lists and provides some common operations
++ to the various flavors of monoids.
ListMonoidOps(S, E, un): Exports == Implementation where
S : SetCategory
E : AbelianMonoid
un: E
REC ==> Record(gen:S, exp: E)
O ==> OutputForm
Exports ==> Join(SetCategory, RetractableTo S) with
outputForm : ($, (O, O) -> O, (O, O) -> O, Integer) -> O
++ outputForm(l, fop, fexp, unit) converts the monoid element
++ represented by l to an \spadtype{OutputForm}.
++ Argument unit is the output form
++ for the \spadignore{unit} of the monoid (e.g. 0 or 1),
++ \spad{fop(a, b)} is the
++ output form for the monoid operation applied to \spad{a} and b
++ (e.g. \spad{a + b}, \spad{a * b}, \spad{ab}),
++ and \spad{fexp(a, n)} is the output form
++ for the exponentiation operation applied to \spad{a} and n
++ (e.g. \spad{n a}, \spad{n * a}, \spad{a ** n}, \spad{a\^n}).
listOfMonoms : $ -> List REC
++ listOfMonoms(l) returns the list of the monomials forming l.
makeTerm : (S, E) -> $
++ makeTerm(s, e) returns the monomial s exponentiated by e
++ (e.g. s^e or e * s).
makeMulti : List REC -> $
++ makeMulti(l) returns the element whose list of monomials is l.
nthExpon : ($, Integer) -> E
++ nthExpon(l, n) returns the exponent of the n^th monomial of l.
nthFactor : ($, Integer) -> S
++ nthFactor(l, n) returns the factor of the n^th monomial of l.
reverse : $ -> $
++ reverse(l) reverses the list of monomials forming l. This
++ has some effect if the monoid is non-abelian, i.e.
++ \spad{reverse(a1\^e1 ... an\^en) = an\^en ... a1\^e1} which is different.
reverse! : $ -> $
++ reverse!(l) reverses the list of monomials forming l, destroying
++ the element l.
size : $ -> NonNegativeInteger
++ size(l) returns the number of monomials forming l.
makeUnit : () -> $
++ makeUnit() returns the unit element of the monomial.
rightMult : ($, S) -> $
++ rightMult(a, s) returns \spad{a * s} where \spad{*}
++ is the monoid operation,
++ which is assumed non-commutative.
leftMult : (S, $) -> $
++ leftMult(s, a) returns \spad{s * a} where
++ \spad{*} is the monoid operation,
++ which is assumed non-commutative.
plus : (S, E, $) -> $
++ plus(s, e, x) returns \spad{e * s + x} where \spad{+}
++ is the monoid operation,
++ which is assumed commutative.
plus : ($, $) -> $
++ plus(x, y) returns \spad{x + y} where \spad{+}
++ is the monoid operation,
++ which is assumed commutative.
commutativeEquality: ($, $) -> Boolean
++ commutativeEquality(x,y) returns true if x and y are equal
++ assuming commutativity
mapExpon : (E -> E, $) -> $
++ mapExpon(f, a1\^e1 ... an\^en) returns \spad{a1\^f(e1) ... an\^f(en)}.
mapGen : (S -> S, $) -> $
++ mapGen(f, a1\^e1 ... an\^en) returns \spad{f(a1)\^e1 ... f(an)\^en}.
Implementation ==> add
Rep := List REC
localplus: ($, $) -> $
makeUnit() == empty()$Rep
size l == # listOfMonoms l
coerce(s:S):$ == [[s, un]]
coerce(l:$):O == coerce(l)$Rep
makeTerm(s, e) == (zero? e => makeUnit(); [[s, e]])
makeMulti l == l
f = g == f =$Rep g
listOfMonoms l == l pretend List(REC)
nthExpon(f, i) == f.(i-1+minIndex f).exp
nthFactor(f, i) == f.(i-1+minIndex f).gen
reverse l == reverse(l)$Rep
reverse! l == reverse!(l)$Rep
mapGen(f, l) == [[f(x.gen), x.exp] for x in l]
mapExpon(f, l) ==
ans:List(REC) := empty()
for x in l repeat
if (a := f(x.exp)) ~= 0 then ans := concat([x.gen, a], ans)
reverse! ans
outputForm(l, op, opexp, id) ==
empty? l => id::OutputForm
l:List(O) :=
[(p.exp = un => p.gen::O; opexp(p.gen::O, p.exp::O)) for p in l]
reduce(op, l)
retractIfCan(l:$):Union(S, "failed") ==
not empty? l and empty? rest l and l.first.exp = un => l.first.gen
"failed"
rightMult(f, s) ==
empty? f => s::$
s = f.last.gen => (setlast!(h := copy f, [s, f.last.exp + un]); h)
concat(f, [s, un])
leftMult(s, f) ==
empty? f => s::$
s = f.first.gen => concat([s, f.first.exp + un], rest f)
concat([s, un], f)
commutativeEquality(s1:$, s2:$):Boolean ==
#s1 ~= #s2 => false
for t1 in s1 repeat
if not member?(t1,s2) then return false
true
plus!(s:S, n:E, f:$):$ ==
h := g := concat([s, n], f)
h1 := rest h
while not empty? h1 repeat
s = h1.first.gen =>
l :=
zero?(m := n + h1.first.exp) => rest h1
concat([s, m], rest h1)
setrest!(h, l)
return rest g
h := h1
h1 := rest h1
g
plus(s, n, f) == plus!(s,n,copy f)
plus(f, g) ==
#f < #g => localplus(f, g)
localplus(g, f)
localplus(f, g) ==
g := copy g
for x in f repeat
g := plus(x.gen, x.exp, g)
g
@
\section{A Category for Free Monoids}
<<category FMONCAT FreeMonoidCategory>>=
)abbrev category FMONCAT FreeMonoidCategory
++ Free monoid on any set of generators
++ Author: Stephen M. Watt, Gabriel Dos Reis
++ Date Created: September 26, 2009
++ Date Last Updated: September 26, 2009
++ Description:
++ A free monoid on a set S is the monoid of finite products of
++ the form \spad{reduce(*,[si ** ni])} where the si's are in S, and the ni's
++ are nonnegative integers. The multiplication is not commutative.
FreeMonoidCategory(S: SetCategory): Category == Exports where
macro NNI == NonNegativeInteger
macro REC == Record(gen: S, exp: NonNegativeInteger)
macro Ex == OutputForm
Exports == Join(Monoid, RetractableTo S) with
*: (S, %) -> %
++ \spad{s * x} returns the product of \spad{x} by \spad{s} on the left.
*: (%, S) -> %
++ \spad{x * s} returns the product of \spad{x} by \spad{s} on the right.
**: (S, NonNegativeInteger) -> %
++ \spad{s ** n} returns the product of \spad{s} by itself \spad{n} times.
hclf: (%, %) -> %
++ \spad{hclf(x, y)} returns the highest common left factor of
++ \spad{x} and \spad{y},
++ i.e. the largest d such that \spad{x = d a} and \spad{y = d b}.
hcrf: (%, %) -> %
++ hcrf(x, y) returns the highest common right factor of x and y,
++ i.e. the largest d such that \spad{x = a d} and \spad{y = b d}.
lquo: (%, %) -> Union(%, "failed")
++ lquo(x, y) returns the exact left quotient of x by y i.e.
++ q such that \spad{x = y * q},
++ "failed" if x is not of the form \spad{y * q}.
rquo: (%, %) -> Union(%, "failed")
++ rquo(x, y) returns the exact right quotient of x by y i.e.
++ q such that \spad{x = q * y},
++ "failed" if x is not of the form \spad{q * y}.
divide: (%, %) -> Union(Record(lm: %, rm: %), "failed")
++ divide(x, y) returns the left and right exact quotients of
++ x by y, i.e. \spad{[l, r]} such that \spad{x = l * y * r},
++ "failed" if x is not of the form \spad{l * y * r}.
overlap: (%, %) -> Record(lm: %, mm: %, rm: %)
++ overlap(x, y) returns \spad{[l, m, r]} such that
++ \spad{x = l * m}, \spad{y = m * r} and l and r have no overlap,
++ i.e. \spad{overlap(l, r) = [l, 1, r]}.
size : % -> NNI
++ size(x) returns the number of monomials in x.
factors : % -> List Record(gen: S, exp: NonNegativeInteger)
++ factors(a1\^e1,...,an\^en) returns \spad{[[a1, e1],...,[an, en]]}.
nthExpon : (%, Integer) -> NonNegativeInteger
++ nthExpon(x, n) returns the exponent of the n^th monomial of x.
nthFactor : (%, Integer) -> S
++ nthFactor(x, n) returns the factor of the n^th monomial of x.
mapExpon : (NNI -> NNI, %) -> %
++ mapExpon(f, a1\^e1 ... an\^en) returns \spad{a1\^f(e1) ... an\^f(en)}.
mapGen : (S -> S, %) -> %
++ mapGen(f, a1\^e1 ... an\^en) returns \spad{f(a1)\^e1 ... f(an)\^en}.
if S has OrderedSet then OrderedSet
@
\section{domain FMONOID FreeMonoid}
<<domain FMONOID FreeMonoid>>=
)abbrev domain FMONOID FreeMonoid
++ Free monoid on any set of generators
++ Author: Stephen M. Watt
++ Date Created: ???
++ Date Last Updated: 6 June 1991
++ Description:
++ The free monoid on a set S is the monoid of finite products of
++ the form \spad{reduce(*,[si ** ni])} where the si's are in S, and the ni's
++ are nonnegative integers. The multiplication is not commutative.
FreeMonoid(S: SetCategory): FreeMonoidCategory(S) == FMdefinition where
macro NNI == NonNegativeInteger
macro REC == Record(gen: S, exp: NonNegativeInteger)
macro Ex == OutputForm
FMdefinition == ListMonoidOps(S, NonNegativeInteger, 1) add
Rep := ListMonoidOps(S, NonNegativeInteger, 1)
1 == makeUnit()
one? f == empty? listOfMonoms f
coerce(f:$): Ex == outputForm(f, "*", "**", 1)
hcrf(f, g) == reverse! hclf(reverse f, reverse g)
f:$ * s:S == rightMult(f, s)
s:S * f:$ == leftMult(s, f)
factors f == copy listOfMonoms f
mapExpon(f, x) == mapExpon(f, x)$Rep
mapGen(f, x) == mapGen(f, x)$Rep
s:S ** n:NonNegativeInteger == makeTerm(s, n)
f:$ * g:$ ==
one? f => g
one? g => f
lg := listOfMonoms g
ls := last(lf := listOfMonoms f)
ls.gen = lg.first.gen =>
setlast!(h := copy lf,[lg.first.gen,lg.first.exp+ls.exp])
makeMulti concat(h, rest lg)
makeMulti concat(lf, lg)
overlap(la, ar) ==
one? la or one? ar => [la, 1, ar]
lla := la0 := listOfMonoms la
lar := listOfMonoms ar
l:List(REC) := empty()
while not empty? lla repeat
if lla.first.gen = lar.first.gen then
if lla.first.exp < lar.first.exp and empty? rest lla then
return [makeMulti l,
makeTerm(lla.first.gen, lla.first.exp),
makeMulti concat([lar.first.gen,
(lar.first.exp - lla.first.exp)::NNI],
rest lar)]
if lla.first.exp >= lar.first.exp then
if (ru:= lquo(makeMulti rest lar,
makeMulti rest lla)) case $ then
if lla.first.exp > lar.first.exp then
l := concat!(l, [lla.first.gen,
(lla.first.exp - lar.first.exp)::NNI])
m := concat([lla.first.gen, lar.first.exp],
rest lla)
else m := lla
return [makeMulti l, makeMulti m, ru::$]
l := concat!(l, lla.first)
lla := rest lla
[makeMulti la0, 1, makeMulti lar]
divide(lar, a) ==
one? a => [lar, 1]
Na : Integer := #(la := listOfMonoms a)
Nlar : Integer := #(llar := listOfMonoms lar)
l:List(REC) := empty()
while Na <= Nlar repeat
if llar.first.gen = la.first.gen and
llar.first.exp >= la.first.exp then
-- Can match a portion of this lar factor.
-- Now match tail.
(q:=lquo(makeMulti rest llar,makeMulti rest la))case $ =>
if llar.first.exp > la.first.exp then
l := concat!(l, [la.first.gen,
(llar.first.exp - la.first.exp)::NNI])
return [makeMulti l, q::$]
l := concat!(l, first llar)
llar := rest llar
Nlar := Nlar - 1
"failed"
hclf(f, g) ==
h:List(REC) := empty()
for f0 in listOfMonoms f for g0 in listOfMonoms g repeat
f0.gen ~= g0.gen => return makeMulti h
h := concat!(h, [f0.gen, min(f0.exp, g0.exp)])
f0.exp ~= g0.exp => return makeMulti h
makeMulti h
lquo(aq, a) ==
size a > #(laq := copy listOfMonoms aq) => "failed"
for a0 in listOfMonoms a repeat
a0.gen ~= laq.first.gen or a0.exp > laq.first.exp =>
return "failed"
if a0.exp = laq.first.exp then laq := rest laq
else setfirst!(laq, [laq.first.gen,
(laq.first.exp - a0.exp)::NNI])
makeMulti laq
rquo(qa, a) ==
(u := lquo(reverse qa, reverse a)) case "failed" => "failed"
reverse!(u::$)
if S has OrderedSet then
a < b ==
la := listOfMonoms a
lb := listOfMonoms b
na: Integer := #la
nb: Integer := #lb
while positive? na and positive? nb repeat
la.first.gen > lb.first.gen => return false
la.first.gen < lb.first.gen => return true
if la.first.exp = lb.first.exp then
la:=rest la
lb:=rest lb
na:=na - 1
nb:=nb - 1
else if la.first.exp > lb.first.exp then
la:=concat([la.first.gen,
(la.first.exp - lb.first.exp)::NNI], rest lb)
lb:=rest lb
nb:=nb - 1
else
lb:=concat([lb.first.gen,
(lb.first.exp-la.first.exp)::NNI], rest la)
la:=rest la
na:=na-1
empty? la and not empty? lb
@
\section{domain FGROUP FreeGroup}
<<domain FGROUP FreeGroup>>=
)abbrev domain FGROUP FreeGroup
++ Free group on any set of generators
++ Author: Stephen M. Watt
++ Date Created: ???
++ Date Last Updated: 6 June 1991
++ Description:
++ The free group on a set S is the group of finite products of
++ the form \spad{reduce(*,[si ** ni])} where the si's are in S, and the ni's
++ are integers. The multiplication is not commutative.
FreeGroup(S: SetCategory): Join(Group, RetractableTo S) with
*: (S, $) -> $
++ s * x returns the product of x by s on the left.
*: ($, S) -> $
++ x * s returns the product of x by s on the right.
** : (S, Integer) -> $
++ s ** n returns the product of s by itself n times.
size : $ -> NonNegativeInteger
++ size(x) returns the number of monomials in x.
nthExpon : ($, Integer) -> Integer
++ nthExpon(x, n) returns the exponent of the n^th monomial of x.
nthFactor : ($, Integer) -> S
++ nthFactor(x, n) returns the factor of the n^th monomial of x.
mapExpon : (Integer -> Integer, $) -> $
++ mapExpon(f, a1\^e1 ... an\^en) returns \spad{a1\^f(e1) ... an\^f(en)}.
mapGen : (S -> S, $) -> $
++ mapGen(f, a1\^e1 ... an\^en) returns \spad{f(a1)\^e1 ... f(an)\^en}.
factors : $ -> List Record(gen: S, exp: Integer)
++ factors(a1\^e1,...,an\^en) returns \spad{[[a1, e1],...,[an, en]]}.
== ListMonoidOps(S, Integer, 1) add
Rep := ListMonoidOps(S, Integer, 1)
1 == makeUnit()
one? f == empty? listOfMonoms f
s:S ** n:Integer == makeTerm(s, n)
f:$ * s:S == rightMult(f, s)
s:S * f:$ == leftMult(s, f)
inv f == reverse! mapExpon("-", f)
factors f == copy listOfMonoms f
mapExpon(f, x) == mapExpon(f, x)$Rep
mapGen(f, x) == mapGen(f, x)$Rep
coerce(f:$):OutputForm == outputForm(f, "*", "**", 1)
f:$ * g:$ ==
one? f => g
one? g => f
r := reverse listOfMonoms f
q := copy listOfMonoms g
while not empty? r and not empty? q and r.first.gen = q.first.gen
and r.first.exp = -q.first.exp repeat
r := rest r
q := rest q
empty? r => makeMulti q
empty? q => makeMulti reverse! r
r.first.gen = q.first.gen =>
setlast!(h := reverse! r,
[q.first.gen, q.first.exp + r.first.exp])
makeMulti concat!(h, rest q)
makeMulti concat!(reverse! r, q)
@
\section{category FAMONC FreeAbelianMonoidCategory}
<<category FAMONC FreeAbelianMonoidCategory>>=
)abbrev category FAMONC FreeAbelianMonoidCategory
++ Category for free abelian monoid on any set of generators
++ Author: Manuel Bronstein
++ Date Created: November 1989
++ Date Last Updated: 6 June 1991
++ Description:
++ A free abelian monoid on a set S is the monoid of finite sums of
++ the form \spad{reduce(+,[ni * si])} where the si's are in S, and the ni's
++ are in a given abelian monoid. The operation is commutative.
FreeAbelianMonoidCategory(S: SetCategory, E:CancellationAbelianMonoid): Category ==
Join(CancellationAbelianMonoid, RetractableTo S) with
+ : (S, $) -> $
++ s + x returns the sum of s and x.
* : (E, S) -> $
++ e * s returns e times s.
size : $ -> NonNegativeInteger
++ size(x) returns the number of terms in x.
++ mapGen(f, a1\^e1 ... an\^en) returns \spad{f(a1)\^e1 ... f(an)\^en}.
terms : $ -> List Record(gen: S, exp: E)
++ terms(e1 a1 + ... + en an) returns \spad{[[a1, e1],...,[an, en]]}.
nthCoef : ($, Integer) -> E
++ nthCoef(x, n) returns the coefficient of the n^th term of x.
nthFactor : ($, Integer) -> S
++ nthFactor(x, n) returns the factor of the n^th term of x.
coefficient: (S, $) -> E
++ coefficient(s, e1 a1 + ... + en an) returns ei such that
++ ai = s, or 0 if s is not one of the ai's.
mapCoef : (E -> E, $) -> $
++ mapCoef(f, e1 a1 +...+ en an) returns
++ \spad{f(e1) a1 +...+ f(en) an}.
mapGen : (S -> S, $) -> $
++ mapGen(f, e1 a1 +...+ en an) returns
++ \spad{e1 f(a1) +...+ en f(an)}.
if E has OrderedAbelianMonoid then
highCommonTerms: ($, $) -> $
++ highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm) returns
++ \spad{reduce(+,[max(ei, fi) ci])}
++ where ci ranges in the intersection
++ of \spad{{a1,...,an}} and \spad{{b1,...,bm}}.
@
\section{domain IFAMON InnerFreeAbelianMonoid}
<<domain IFAMON InnerFreeAbelianMonoid>>=
)abbrev domain IFAMON InnerFreeAbelianMonoid
++ Internal free abelian monoid on any set of generators
++ Author: Manuel Bronstein
++ Date Created: November 1989
++ Date Last Updated: 6 June 1991
++ Description:
++ Internal implementation of a free abelian monoid.
InnerFreeAbelianMonoid(S: SetCategory, E:CancellationAbelianMonoid, un:E):
FreeAbelianMonoidCategory(S, E) == ListMonoidOps(S, E, un) add
Rep := ListMonoidOps(S, E, un)
0 == makeUnit()
zero? f == empty? listOfMonoms f
terms f == copy listOfMonoms f
nthCoef(f, i) == nthExpon(f, i)
nthFactor(f, i) == nthFactor(f, i)$Rep
s:S + f:$ == plus(s, un, f)
f:$ + g:$ == plus(f, g)
(f:$ = g:$):Boolean == commutativeEquality(f,g)
n:E * s:S == makeTerm(s, n)
n:NonNegativeInteger * f:$ == mapExpon(n * #1, f)
coerce(f:$):OutputForm == outputForm(f, "+", #2 * #1, 0)
mapCoef(f, x) == mapExpon(f, x)
mapGen(f, x) == mapGen(f, x)$Rep
coefficient(s, f) ==
for x in terms f repeat
x.gen = s => return(x.exp)
0
if E has OrderedAbelianMonoid then
highCommonTerms(f, g) ==
makeMulti [[x.gen, min(x.exp, n)] for x in listOfMonoms f
| positive?(n := coefficient(x.gen, g))]
@
\section{domain FAMONOID FreeAbelianMonoid}
<<domain FAMONOID FreeAbelianMonoid>>=
)abbrev domain FAMONOID FreeAbelianMonoid
++ Free abelian monoid on any set of generators
++ Author: Manuel Bronstein
++ Date Created: November 1989
++ Date Last Updated: 6 June 1991
++ Description:
++ The free abelian monoid on a set S is the monoid of finite sums of
++ the form \spad{reduce(+,[ni * si])} where the si's are in S, and the ni's
++ are non-negative integers. The operation is commutative.
FreeAbelianMonoid(S: SetCategory):
FreeAbelianMonoidCategory(S, NonNegativeInteger)
== InnerFreeAbelianMonoid(S, NonNegativeInteger, 1)
@
\section{domain FAGROUP FreeAbelianGroup}
<<domain FAGROUP FreeAbelianGroup>>=
)abbrev domain FAGROUP FreeAbelianGroup
++ Free abelian group on any set of generators
++ Author: Manuel Bronstein
++ Date Created: November 1989
++ Date Last Updated: 6 June 1991
++ Description:
++ The free abelian group on a set S is the monoid of finite sums of
++ the form \spad{reduce(+,[ni * si])} where the si's are in S, and the ni's
++ are integers. The operation is commutative.
FreeAbelianGroup(S:SetCategory): Exports == Implementation where
Exports ==> Join(AbelianGroup, Module Integer,
FreeAbelianMonoidCategory(S, Integer)) with
if S has OrderedSet then OrderedSet
Implementation ==> InnerFreeAbelianMonoid(S, Integer, 1) add
- f == mapCoef("-", f)
if S has OrderedSet then
inmax: List Record(gen: S, exp: Integer) -> Record(gen: S, exp:Integer)
inmax l ==
mx := first l
for t in rest l repeat
if t.gen > mx.gen then mx := t
mx
a < b ==
zero? a =>
zero? b => false
positive?((inmax terms b).exp)
ta := inmax terms a
zero? b => negative? ta.exp
ta := inmax terms a
tb := inmax terms b
ta.gen < tb.gen => positive? tb.exp
ta.gen > tb.gen => negative? ta.exp
ta.exp < tb.exp => true
ta.exp > tb.exp => false
lc := ta.exp * ta.gen
(a - lc) < (b - lc)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain LMOPS ListMonoidOps>>
<<category FMONCAT FreeMonoidCategory>>
<<domain FMONOID FreeMonoid>>
<<domain FGROUP FreeGroup>>
<<category FAMONC FreeAbelianMonoidCategory>>
<<domain IFAMON InnerFreeAbelianMonoid>>
<<domain FAMONOID FreeAbelianMonoid>>
<<domain FAGROUP FreeAbelianGroup>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|