aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/fourier.spad.pamphlet
blob: 320e19a71e9389db03e57c23b61cae97d34b7bb0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra fourier.spad}
\author{James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain FCOMP FourierComponent}
<<domain FCOMP FourierComponent>>=
)abbrev domain FCOMP FourierComponent
++ Author: James Davenport
++ Date Created: 17 April 1992
++ Date Last Updated: 12 June 1992
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
FourierComponent(E:OrderedSet):
       OrderedSet with
         sin: E -> $
         ++ sin(x) makes a sin kernel for use in Fourier series
         cos: E -> $
         ++ cos(x) makes a cos kernel for use in Fourier series
         sin?: $ -> Boolean
         ++ sin?(x) returns true if term is a sin, otherwise false
         argument: $ -> E
         ++ argument(x) returns the argument of a given sin/cos expressions
    ==
  add
   --representations
   Rep:=Record(SinIfTrue:Boolean, arg:E)
   e:E
   x,y:$
   sin e == [true,e]
   cos e == [false,e]
   sin? x == x.SinIfTrue
   argument x == x.arg
   coerce(x):OutputForm ==
     hconcat((if x.SinIfTrue then "sin" else "cos")::OutputForm,
              bracket((x.arg)::OutputForm))
   x<y ==
     x.arg < y.arg => true
     y.arg < x.arg => false
     x.SinIfTrue => false
     y.SinIfTrue

@
\section{domain FSERIES FourierSeries}
<<domain FSERIES FourierSeries>>=
)abbrev domain FSERIES FourierSeries
++ Author: James Davenport
++ Date Created: 17 April 1992
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
FourierSeries(R:Join(CommutativeRing,Algebra(Fraction Integer)),
              E:Join(OrderedSet,AbelianGroup)):
       Algebra(R) with
         if E has canonical and R has canonical then canonical
         coerce: R -> $
         ++ coerce(r) converts coefficients into Fourier Series
         coerce: FourierComponent(E) -> $
         ++ coerce(c) converts sin/cos terms into Fourier Series
         makeSin: (E,R) -> $
         ++ makeSin(e,r) makes a sin expression with given argument and coefficient
         makeCos: (E,R) -> $
         ++ makeCos(e,r) makes a sin expression with given argument and coefficient
    == FreeModule(R,FourierComponent(E))
  add
   --representations
   Term := Record(k:FourierComponent(E),c:R)
   Rep  := List Term
   multiply : (Term,Term) -> $
   w,x1,x2:$
   n:NonNegativeInteger
   z:Integer
   e:FourierComponent(E)
   a:E
   r:R
   1 == [[cos 0,1]]
   coerce e ==
      sin? e and zero? argument e => 0
      if argument e < 0  then
           not sin? e => e:=cos(- argument e)
           return [[sin(- argument e),-1]]
      [[e,1]]
   multiply(t1,t2) ==
     r:=(t1.c*t2.c)*(1/2)
     s1:=argument t1.k
     s2:=argument t2.k
     sum:=s1+s2
     diff:=s1-s2
     sin? t1.k =>
       sin? t2.k =>
         makeCos(diff,r) + makeCos(sum,-r)
       makeSin(sum,r) + makeSin(diff,r)
     sin? t2.k =>
       makeSin(sum,r) + makeSin(diff,r)
     makeCos(diff,r) + makeCos(sum,r)
   x1*x2 ==
     null x1 => 0
     null x2 => 0
     +/[+/[multiply(t1,t2) for t2 in x2] for t1 in x1]
   makeCos(a,r) ==
      a<0 => [[cos(-a),r]]
      [[cos a,r]]
   makeSin(a,r) ==
      zero? a => []
      a<0 => [[sin(-a),-r]]
      [[sin a,r]]

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FCOMP FourierComponent>>
<<domain FSERIES FourierSeries>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}