aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/ffpoly2.spad.pamphlet
blob: b4f6b7672e1a73db8293090a4630f8025e9ef066 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra ffpoly2.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package FFPOLY2 FiniteFieldPolynomialPackage2}
<<package FFPOLY2 FiniteFieldPolynomialPackage2>>=
)abbrev package FFPOLY2 FiniteFieldPolynomialPackage2
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated:
++ Basic Operations: rootOfIrreduciblePoly
++ Related Constructors: FiniteFieldCategory
++ Also See:
++ AMS Classifications:
++ Keywords: finite field, zeros of polynomials, Berlekamp's trace algorithm
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  AXIOM Technical Report Series, to appear.
++ Description:
++  FiniteFieldPolynomialPackage2(F,GF) exports some functions concerning
++  finite fields, which depend on a finite field {\em GF} and an
++  algebraic extension F of {\em GF}, e.g. a zero of a polynomial
++  over {\em GF} in F.
FiniteFieldPolynomialPackage2(F,GF):Exports == Implementation where
  F:FieldOfPrimeCharacteristic with
      coerce: GF -> F
	++ coerce(x) \undocumented{}
      lookup: F -> PositiveInteger
	++ lookup(x) \undocumented{}
      basis: PositiveInteger -> Vector F
	++ basis(n) \undocumented{}
      Frobenius: F -> F
	++ Frobenius(x) \undocumented{}
  -- F should be a algebraic extension of the finite field GF, either an
  -- algebraic closure of GF or a simple algebraic extension field of GF
  GF:FiniteFieldCategory

  I   ==> Integer
  NNI ==> NonNegativeInteger
  PI  ==> PositiveInteger
  SUP ==> SparseUnivariatePolynomial
  MM  ==> ModMonic(GF,SUP GF)
  OUT ==> OutputForm
  M   ==> Matrix
  V   ==> Vector
  L   ==> List
  FFPOLY ==> FiniteFieldPolynomialPackage(GF)
  SUPF2 ==> SparseUnivariatePolynomialFunctions2(GF,F)

  Exports ==> with

    rootOfIrreduciblePoly:SUP GF -> F
      ++ rootOfIrreduciblePoly(f) computes one root of the monic,
      ++ irreducible polynomial f, which degree must divide the extension degree
      ++ of {\em F} over {\em GF},
      ++ i.e. f splits into linear factors over {\em F}.


  Implementation ==> add

-- we use berlekamps trace algorithm
-- it is not checked whether the polynomial is irreducible over GF]]
    rootOfIrreduciblePoly(pf) ==
--    not irreducible(pf)$FFPOLY =>
--      error("polynomial has to be irreducible")
      sizeGF:=size()$GF
      -- if the polynomial is of degree one, we're ready
      deg:=degree(pf)$(SUP GF)::PI
      deg = 0 => error("no roots")
      deg = 1 => -coefficient(pf,0)$(SUP GF)::F
      p : SUP F := map(coerce,pf)$SUPF2
      -- compute qexp, qexp(i) = x **(size()GF ** i) mod p
      -- with this list it's easier to compute the gcd(p(x),trace(x))
      qexp:=reducedQPowers(pf)$FFPOLY
      stillToFactor:=p
      -- take linear independent elements, the basis of F over GF
      basis:Vector F:=basis(deg)$F
      basispointer:I:=1
      -- as p is irreducible over GF, 0 can't be a root of p
      -- therefore we can use the predicate zero?(root) for indicating
      -- whether a root is found
      root:=0$F
      while zero?(root)$F repeat
        beta:F:=basis.basispointer
        -- gcd(trace(x)+gf,p(x)) has degree 0,that's why we skip beta=1
        if beta = 1$F then
          basispointer:=basispointer + 1
          beta:= basis.basispointer
        basispointer:=basispointer+1
        -- compute the polynomial trace(beta * x) mod p(x) using explist
        trModp:SUP F:= map(coerce,qexp.0)$SUPF2 * beta
        for i in 1..deg-1 repeat
          beta:=Frobenius(beta)
          trModp:=trModp +$(SUP F) beta *$(SUP F) map(coerce,qexp.i)$SUPF2
        -- if it is of degree 0, it doesn't help us finding a root
        if positive? degree(trModp)$(SUP F) then
          -- for all elements gf of GF do
          for j in 1..sizeGF repeat
            -- compute gcd(trace(beta * x) + gf,stillToFactor)
            h:=gcd(stillToFactor,trModp +$(SUP F) _
             (index(j pretend PI)$GF::F::(SUP F)))$(SUP F)
            -- make the gcd polynomial monic
            if not one? leadingCoefficient(h)$(SUP F) then
              h:= (inv leadingCoefficient(h)) * h
            degh:=degree(h)$(SUP F)
            degSTF:=degree(stillToFactor)$(SUP F)
            -- if the gcd has degree one we are ready
            degh = 1 => root:=-coefficient(h,0)$(SUP F)
            -- if the quotient of stillToFactor and the gcd has
            -- degree one, we're also ready
            degSTF - degh = 1 =>
              root:= -coefficient(stillToFactor quo h,0)$(SUP F)
            -- otherwise the gcd helps us finding a root, only if its
            -- degree is between 2 and degree(stillToFactor)-2
            if degh > 1 and degh < degSTF then
              2*degh > degSTF => stillToFactor := stillToFactor quo h
              stillToFactor := h
      root

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package FFPOLY2 FiniteFieldPolynomialPackage2>>

@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}