1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra ffpoly.spad}
\author{Alexandre Bouyer, Johannes Grabmeier, Alfred Scheerhorn, Robert Sutor, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package FFPOLY FiniteFieldPolynomialPackage}
<<package FFPOLY FiniteFieldPolynomialPackage>>=
)abbrev package FFPOLY FiniteFieldPolynomialPackage
++ Author: A. Bouyer, J. Grabmeier, A. Scheerhorn, R. Sutor, B. Trager
++ Date Created: January 1991
++ Date Last Updated: 1 June 1994
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: finite field, polynomial, irreducible polynomial, normal
++ polynomial, primitive polynomial, random polynomials
++ References:
++ [LS] Lenstra, H. W. & Schoof, R. J., "Primitivive Normal Bases
++ for Finite Fields", Math. Comp. 48, 1987, pp. 217-231
++ [LN] Lidl, R. & Niederreiter, H., "Finite Fields",
++ Encycl. of Math. 20, Addison-Wesley, 1983
++ J. Grabmeier, A. Scheerhorn: Finite Fields in Axiom.
++ Axiom Technical Report Series, to appear.
++ Description:
++ This package provides a number of functions for generating, counting
++ and testing irreducible, normal, primitive, random polynomials
++ over finite fields.
FiniteFieldPolynomialPackage GF : Exports == Implementation where
GF : FiniteFieldCategory
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
PI ==> PositiveInteger
Rec ==> Record(expnt:NNI, coeff:GF)
Repr ==> L Rec
SUP ==> SparseUnivariatePolynomial GF
Exports ==> with
-- qEulerPhiCyclotomic : PI -> PI
-- ++ qEulerPhiCyclotomic(n)$FFPOLY(GF) yields the q-Euler's function
-- ++ of the n-th cyclotomic polynomial over the field {\em GF} of
-- ++ order q (cf. [LN] p.122);
-- ++ error if n is a multiple of the field characteristic.
primitive? : SUP -> Boolean
++ primitive?(f) tests whether the polynomial f over a finite
++ field is primitive, i.e. all its roots are primitive.
normal? : SUP -> Boolean
++ normal?(f) tests whether the polynomial f over a finite field is
++ normal, i.e. its roots are linearly independent over the field.
numberOfIrreduciblePoly : PI -> PI
++ numberOfIrreduciblePoly(n)$FFPOLY(GF) yields the number of
++ monic irreducible univariate polynomials of degree n
++ over the finite field {\em GF}.
numberOfPrimitivePoly : PI -> PI
++ numberOfPrimitivePoly(n)$FFPOLY(GF) yields the number of
++ primitive polynomials of degree n over the finite field {\em GF}.
numberOfNormalPoly : PI -> PI
++ numberOfNormalPoly(n)$FFPOLY(GF) yields the number of
++ normal polynomials of degree n over the finite field {\em GF}.
createIrreduciblePoly : PI -> SUP
++ createIrreduciblePoly(n)$FFPOLY(GF) generates a monic irreducible
++ univariate polynomial of degree n over the finite field {\em GF}.
createPrimitivePoly : PI -> SUP
++ createPrimitivePoly(n)$FFPOLY(GF) generates a primitive polynomial
++ of degree n over the finite field {\em GF}.
createNormalPoly : PI -> SUP
++ createNormalPoly(n)$FFPOLY(GF) generates a normal polynomial
++ of degree n over the finite field {\em GF}.
createNormalPrimitivePoly : PI -> SUP
++ createNormalPrimitivePoly(n)$FFPOLY(GF) generates a normal and
++ primitive polynomial of degree n over the field {\em GF}.
++ Note: this function is equivalent to createPrimitiveNormalPoly(n)
createPrimitiveNormalPoly : PI -> SUP
++ createPrimitiveNormalPoly(n)$FFPOLY(GF) generates a normal and
++ primitive polynomial of degree n over the field {\em GF}.
++ polynomial of degree n over the field {\em GF}.
nextIrreduciblePoly : SUP -> Union(SUP, "failed")
++ nextIrreduciblePoly(f) yields the next monic irreducible polynomial
++ over a finite field {\em GF} of the same degree as f in the following
++ order, or "failed" if there are no greater ones.
++ Error: if f has degree 0.
++ Note: the input polynomial f is made monic.
++ Also, \spad{f < g} if
++ the number of monomials of f is less
++ than this number for g.
++ If f and g have the same number of monomials,
++ the lists of exponents are compared lexicographically.
++ If these lists are also equal, the lists of coefficients
++ are compared according to the lexicographic ordering induced by
++ the ordering of the elements of {\em GF} given by {\em lookup}.
nextPrimitivePoly : SUP -> Union(SUP, "failed")
++ nextPrimitivePoly(f) yields the next primitive polynomial over
++ a finite field {\em GF} of the same degree as f in the following
++ order, or "failed" if there are no greater ones.
++ Error: if f has degree 0.
++ Note: the input polynomial f is made monic.
++ Also, \spad{f < g} if the {\em lookup} of the constant term
++ of f is less than
++ this number for g.
++ If these values are equal, then \spad{f < g} if
++ if the number of monomials of f is less than that for g or if
++ the lists of exponents of f are lexicographically less than the
++ corresponding list for g.
++ If these lists are also equal, the lists of coefficients are
++ compared according to the lexicographic ordering induced by
++ the ordering of the elements of {\em GF} given by {\em lookup}.
nextNormalPoly : SUP -> Union(SUP, "failed")
++ nextNormalPoly(f) yields the next normal polynomial over
++ a finite field {\em GF} of the same degree as f in the following
++ order, or "failed" if there are no greater ones.
++ Error: if f has degree 0.
++ Note: the input polynomial f is made monic.
++ Also, \spad{f < g} if the {\em lookup} of the coefficient
++ of the term of degree
++ {\em n-1} of f is less than that for g.
++ In case these numbers are equal, \spad{f < g} if
++ if the number of monomials of f is less that for g or if
++ the list of exponents of f are lexicographically less than the
++ corresponding list for g.
++ If these lists are also equal, the lists of coefficients are
++ compared according to the lexicographic ordering induced by
++ the ordering of the elements of {\em GF} given by {\em lookup}.
nextNormalPrimitivePoly : SUP -> Union(SUP, "failed")
++ nextNormalPrimitivePoly(f) yields the next normal primitive polynomial
++ over a finite field {\em GF} of the same degree as f in the following
++ order, or "failed" if there are no greater ones.
++ Error: if f has degree 0.
++ Note: the input polynomial f is made monic.
++ Also, \spad{f < g} if the {\em lookup} of the constant
++ term of f is less than
++ this number for g or if
++ {\em lookup} of the coefficient of the term of degree {\em n-1}
++ of f is less than this number for g.
++ Otherwise, \spad{f < g}
++ if the number of monomials of f is less than
++ that for g or if the lists of exponents for f are
++ lexicographically less than those for g.
++ If these lists are also equal, the lists of coefficients are
++ compared according to the lexicographic ordering induced by
++ the ordering of the elements of {\em GF} given by {\em lookup}.
++ This operation is equivalent to nextPrimitiveNormalPoly(f).
nextPrimitiveNormalPoly : SUP -> Union(SUP, "failed")
++ nextPrimitiveNormalPoly(f) yields the next primitive normal polynomial
++ over a finite field {\em GF} of the same degree as f in the following
++ order, or "failed" if there are no greater ones.
++ Error: if f has degree 0.
++ Note: the input polynomial f is made monic.
++ Also, \spad{f < g} if the {\em lookup} of the
++ constant term of f is less than
++ this number for g or, in case these numbers are equal, if the
++ {\em lookup} of the coefficient of the term of degree {\em n-1}
++ of f is less than this number for g.
++ If these numbers are equals, \spad{f < g}
++ if the number of monomials of f is less than
++ that for g, or if the lists of exponents for f are lexicographically
++ less than those for g.
++ If these lists are also equal, the lists of coefficients are
++ coefficients according to the lexicographic ordering induced by
++ the ordering of the elements of {\em GF} given by {\em lookup}.
++ This operation is equivalent to nextNormalPrimitivePoly(f).
-- random : () -> SUP
-- ++ random()$FFPOLY(GF) generates a random monic polynomial
-- ++ of random degree over the field {\em GF}
random : PI -> SUP
++ random(n)$FFPOLY(GF) generates a random monic polynomial
++ of degree n over the finite field {\em GF}.
random : (PI, PI) -> SUP
++ random(m,n)$FFPOLY(GF) generates a random monic polynomial
++ of degree d over the finite field {\em GF}, d between m and n.
leastAffineMultiple: SUP -> SUP
++ leastAffineMultiple(f) computes the least affine polynomial which
++ is divisible by the polynomial f over the finite field {\em GF},
++ i.e. a polynomial whose exponents are 0 or a power of q, the
++ size of {\em GF}.
reducedQPowers: SUP -> PrimitiveArray SUP
++ reducedQPowers(f)
++ generates \spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]}
++ reduced modulo f where \spad{q = size()$GF} and \spad{n = degree f}.
--
-- we intend to implement also the functions
-- cyclotomicPoly: PI -> SUP, order: SUP -> PI,
-- and maybe a new version of irreducible?
Implementation ==> add
import IntegerNumberTheoryFunctions
import DistinctDegreeFactorize(GF, SUP)
MM := ModMonic(GF, SUP)
sizeGF : PI := size()$GF :: PI
revListToSUP(l:Repr):SUP ==
newl:Repr := empty()
-- cannot use map since copy for Record is an XLAM
for t in l repeat newl := cons(copy t, newl)
newl pretend SUP
listToSUP(l:Repr):SUP ==
newl:Repr := [copy t for t in l]
newl pretend SUP
nextSubset : (L NNI, NNI) -> Union(L NNI, "failed")
-- for a list s of length m with 1 <= s.1 < ... < s.m <= bound,
-- nextSubset(s, bound) yields the immediate successor of s
-- (resp. "failed" if s = [1,...,bound])
-- where s < t if and only if:
-- (i) #s < #t; or
-- (ii) #s = #t and s < t in the lexicographical order;
-- (we have chosen to fix the signature with NNI instead of PI
-- to avoid coercions in the main functions)
reducedQPowers(f) ==
m:PI:=degree(f)$SUP pretend PI
m1:I:=m-1
setPoly(f)$MM
e:=reduce(monomial(1,1)$SUP)$MM ** sizeGF
w:=1$MM
qpow:PrimitiveArray SUP:=new(m,0)
qpow.0:=1$SUP
for i in 1..m1 repeat qpow.i:=lift(w:=w*e)$MM
qexp:PrimitiveArray SUP:=new(m,0)
m = 1 =>
qexp.(0$I):= (-coefficient(f,0$NNI)$SUP)::SUP
qexp
qexp.0$I:=monomial(1,1)$SUP
h:=qpow.1
qexp.1:=h
for i in 2..m1 repeat
g:=0$SUP
while h ~= 0 repeat
g:=g + leadingCoefficient(h) * qpow.degree(h)
h:=reductum(h)
qexp.i:=(h:=g)
qexp
leastAffineMultiple(f) ==
-- [LS] p.112
qexp:=reducedQPowers(f)
n:=degree(f)$SUP
b:Matrix GF:= transpose matrix [entries vectorise
(qexp.i,n) for i in 0..n-1]
col1:Matrix GF:= new(n,1,0)
col1(1,1) := 1
ns : List Vector GF := nullSpace (horizConcat(col1,b) )
----------------------------------------------------------------
-- perhaps one should use that the first vector in ns is already
-- the right one
----------------------------------------------------------------
dim:=n+2
coeffVector : Vector GF
until empty? ns repeat
newCoeffVector := ns.1
i : PI :=(n+1) pretend PI
while newCoeffVector(i) = 0 repeat
i := (i - 1) pretend PI
if i < dim then
dim := i
coeffVector := newCoeffVector
ns := rest ns
(coeffVector(1)::SUP) +(+/[monomial(coeffVector.k, _
sizeGF**((k-2)::NNI))$SUP for k in 2..dim])
-- qEulerPhiCyclotomic n ==
-- n = 1 => (sizeGF - 1) pretend PI
-- p : PI := characteristic$GF :: PI
-- (n rem p) = 0 => error
-- "cyclotomic polynomial not defined for this argument value"
-- q : PI := sizeGF
-- -- determine the multiplicative order of q modulo n
-- e : PI := 1
-- qe : PI := q
-- while (qe rem n) ~= 1 repeat
-- e := e + 1
-- qe := qe * q
-- ((qe - 1) ** ((eulerPhi(n) quo e) pretend PI) ) pretend PI
numberOfIrreduciblePoly n ==
-- we compute the number Nq(n) of monic irreducible polynomials
-- of degree n over the field GF of order q by the formula
-- Nq(n) = (1/n)* sum(moebiusMu(n/d)*q**d) where the sum extends
-- over all divisors d of n (cf. [LN] p.93, Th. 3.25)
n = 1 => sizeGF
-- the contribution of d = 1 :
lastd : PI := 1
qd : PI := sizeGF
sum : I := moebiusMu(n) * qd
-- the divisors d > 1 of n :
divisorsOfn : L PI := rest(divisors n) pretend L PI
for d in divisorsOfn repeat
qd := qd * (sizeGF) ** ((d - lastd) pretend PI)
sum := sum + moebiusMu(n quo d) * qd
lastd := d
(sum quo n) :: PI
numberOfPrimitivePoly n == (eulerPhi((sizeGF ** n) - 1) quo n) :: PI
-- [each root of a primitive polynomial of degree n over a field
-- with q elements is a generator of the multiplicative group
-- of a field of order q**n (definition), and the number of such
-- generators is precisely eulerPhi(q**n - 1)]
numberOfNormalPoly n ==
-- we compute the number Nq(n) of normal polynomials of degree n
-- in GF[X], with GF of order q, by the formula
-- Nq(n) = (1/n) * qPhi(X**n - 1) (cf. [LN] p.124) where,
-- for any polynomial f in GF[X] of positive degree n,
-- qPhi(f) = q**n * (1 - q**(-n1)) *...* (1 - q**(-nr)) =
-- q**n * ((q**(n1)-1) / q**(n1)) *...* ((q**(nr)-1) / q**(n_r)),
-- the ni being the degrees of the distinct irreducible factors
-- of f in its canonical factorization over GF
-- ([LN] p.122, Lemma 3.69).
-- hence, if n = m * p**r where p is the characteristic of GF
-- and gcd(m,p) = 1, we get
-- Nq(n) = (1/n)* q**(n-m) * qPhi(X**m - 1)
-- now X**m - 1 is the product of the (pairwise relatively prime)
-- cyclotomic polynomials Qd(X) for which d divides m
-- ([LN] p.64, Th. 2.45), and each Qd(X) factors into
-- eulerPhi(d)/e (distinct) monic irreducible polynomials in GF[X]
-- of the same degree e, where e is the least positive integer k
-- such that d divides q**k - 1 ([LN] p.65, Th. 2.47)
n = 1 => (sizeGF - 1) :: NNI :: PI
m : PI := n
p : PI := characteristic$GF :: PI
q : PI := sizeGF
while (m rem p) = 0 repeat -- find m such that
m := (m quo p) :: PI -- n = m * p**r and gcd(m,p) = 1
m = 1 =>
-- know that n is a power of p
(((q ** ((n-1)::NNI) ) * (q - 1) ) quo n) :: PI
prod : I := q - 1
divisorsOfm : L PI := rest(divisors m) pretend L PI
for d in divisorsOfm repeat
-- determine the multiplicative order of q modulo d
e : PI := 1
qe : PI := q
while not one?(qe rem d) repeat
e := e + 1
qe := qe * q
prod := prod * _
((qe - 1) ** ((eulerPhi(d) quo e) pretend PI) ) pretend PI
(q**((n-m) pretend PI) * prod quo n) pretend PI
primitive? f ==
-- let GF be a field of order q; a monic polynomial f in GF[X]
-- of degree n is primitive over GF if and only if its constant
-- term is non-zero, f divides X**(q**n - 1) - 1 and,
-- for each prime divisor d of q**n - 1,
-- f does not divide X**((q**n - 1) / d) - 1
-- (cf. [LN] p.89, Th. 3.16, and p.87, following Th. 3.11)
n : NNI := degree f
n = 0 => false
not one? leadingCoefficient f => false
coefficient(f, 0) = 0 => false
q : PI := sizeGF
qn1: PI := (q**n - 1) :: NNI :: PI
setPoly f
x := reduce(monomial(1,1)$SUP)$MM -- X rem f represented in MM
--
-- may be improved by tabulating the residues x**(i*q)
-- for i = 0,...,n-1 :
--
not one? lift(x ** qn1)$MM => false -- X**(q**n - 1) rem f in GF[X]
lrec : L Record(factor:I, exponent:I) := factors(factor qn1)
lfact : L PI := [] -- collect the prime factors
for rec in lrec repeat -- of q**n - 1
lfact := cons((rec.factor) :: PI, lfact)
for d in lfact repeat
if (expt := (qn1 quo d)) >= n then
lift(x ** expt)$MM = 1 => return false
true
normal? f ==
-- let GF be a field with q elements; a monic irreducible
-- polynomial f in GF[X] of degree n is normal if its roots
-- x, x**q, ... , x**(q**(n-1)) are linearly independent over GF
n : NNI := degree f
n = 0 => false
not one? leadingCoefficient f => false
coefficient(f, 0) = 0 => false
n = 1 => true
not irreducible? f => false
g:=reducedQPowers(f)
l:=[entries vectorise(g.i,n)$SUP for i in 0..(n-1)::NNI]
rank(matrix(l)$Matrix(GF)) = n => true
false
nextSubset(s, bound) ==
m : NNI := #(s)
m = 0 => [1]
-- find the first element s(i) of s such that s(i) + 1 < s(i+1) :
noGap : Boolean := true
i : NNI := 0
restOfs : L NNI
while noGap and not empty?(restOfs := rest s) repeat
-- after i steps (0 <= i <= m-1) we have s = [s(i), ... , s(m)]
-- and restOfs = [s(i+1), ... , s(m)]
secondOfs := first restOfs -- s(i+1)
firstOfsPlus1 := first s + 1 -- s(i) + 1
secondOfs = firstOfsPlus1 =>
s := restOfs
i := i + 1
setfirst!(s, firstOfsPlus1) -- s := [s(i)+1, s(i+1),..., s(m)]
noGap := false
if noGap then -- here s = [s(m)]
firstOfs := first s
firstOfs < bound => setfirst!(s, firstOfs + 1) -- s := [s(m)+1]
m < bound =>
setfirst!(s, m + 1) -- s := [m+1]
i := m
return "failed" -- (here m = s(m) = bound)
for j in i..1 by -1 repeat -- reconstruct the destroyed
s := cons(j, s) -- initial part of s
s
nextIrreduciblePoly f ==
n : NNI := degree f
n = 0 => error "polynomial must have positive degree"
-- make f monic
if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
-- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
-- then fRepr := [[n,fn], ... , [i0,f{i0}]]
fRepr : Repr := f pretend Repr
fcopy : Repr := []
-- we can not simply write fcopy := copy fRepr because
-- the input(!) f would be modified by assigning
-- a new value to one of its records
term : Rec
for term: free in fRepr repeat
fcopy := cons(copy term, fcopy)
if term.expnt ~= 0 then
fcopy := cons([0,0]$Rec, fcopy)
tailpol : Repr := []
headpol : Repr := fcopy -- [[0,f0], ... , [n,fn]] where
-- fi is non-zero for i > 0
fcopy := reverse fcopy
weight : NNI := (#(fcopy) - 1) :: NNI -- #s(f) as explained above
taillookuplist : L NNI := []
-- the zeroes in the headlookuplist stand for the fi
-- whose lookup's were not yet computed :
headlookuplist : L NNI := new(weight, 0)
s : L NNI := [] -- we will compute s(f) only if necessary
n1 : NNI := (n - 1) :: NNI
repeat
-- (run through the possible weights)
while not empty? headlookuplist repeat
-- find next polynomial in the above order with fixed weight;
-- assume at this point we have
-- headpol = [[i1,f{i1}], [i2,f{i2}], ... , [n,1]]
-- and tailpol = [[k,fk], ... , [0,f0]] (with k < i1)
term := first headpol
j := first headlookuplist
if j = 0 then j := lookup(term.coeff)$GF
j := j + 1 -- lookup(f{i1})$GF + 1
j rem sizeGF = 0 =>
-- in this case one has to increase f{i2}
tailpol := cons(term, tailpol) -- [[i1,f{i1}],...,[0,f0]]
headpol := rest headpol -- [[i2,f{i2}],...,[n,1]]
taillookuplist := cons(j, taillookuplist)
headlookuplist := rest headlookuplist
-- otherwise set f{i1} := index(j)$GF
setelt(first headpol, coeff, index(j :: PI)$GF)
setfirst!(headlookuplist, j)
if empty? taillookuplist then
pol := revListToSUP(headpol)
--
-- may be improved by excluding reciprocal polynomials
--
irreducible? pol => return pol
else
-- go back to fk
headpol := cons(first tailpol, headpol) -- [[k,fk],...,[n,1]]
tailpol := rest tailpol
headlookuplist := cons(first taillookuplist, headlookuplist)
taillookuplist := rest taillookuplist
-- must search for polynomial with greater weight
if empty? s then -- compute s(f)
restfcopy := rest fcopy
for entry in restfcopy repeat s := cons(entry.expnt, s)
weight = n => return "failed"
s1 := nextSubset(rest s, n1) :: L NNI
s := cons(0, s1)
weight := #s
taillookuplist := []
headlookuplist := cons(sizeGF, new((weight-1) :: NNI, 1))
tailpol := []
headpol := [] -- [[0,0], [s.2,1], ... , [s.weight,1], [n,1]] :
s1 := cons(n, reverse s1)
while not empty? s1 repeat
headpol := cons([first s1, 1]$Rec, headpol)
s1 := rest s1
headpol := cons([0, 0]$Rec, headpol)
nextPrimitivePoly f ==
n : NNI := degree f
n = 0 => error "polynomial must have positive degree"
-- make f monic
if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
-- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
-- then fRepr := [[n,fn], ... , [i0,f{i0}]]
fRepr : Repr := f pretend Repr
fcopy : Repr := []
-- we can not simply write fcopy := copy fRepr because
-- the input(!) f would be modified by assigning
-- a new value to one of its records
term : Rec
for term: free in fRepr repeat
fcopy := cons(copy term, fcopy)
if term.expnt ~= 0 then
term := [0,0]$Rec
fcopy := cons(term, fcopy)
fcopy := reverse fcopy
xn : Rec := first fcopy
c0 : GF := term.coeff
l : NNI := lookup(c0)$GF rem sizeGF
n = 1 =>
-- the polynomial X + c is primitive if and only if -c
-- is a primitive element of GF
q1 : NNI := (sizeGF - 1) :: NNI
while l < q1 repeat -- find next c such that -c is primitive
l := l + 1
c := index(l :: PI)$GF
primitive?(-c)$GF =>
return [xn, [0,c]$Rec] pretend SUP
"failed"
weight : NNI := (#(fcopy) - 1) :: NNI -- #s(f)+1 as explained above
s : L NNI := [] -- we will compute s(f) only if necessary
n1 : NNI := (n - 1) :: NNI
-- a necessary condition for a monic polynomial f of degree n
-- over GF to be primitive is that (-1)**n * f(0) be a
-- primitive element of GF (cf. [LN] p.90, Th. 3.18)
c : GF := c0
while l < sizeGF repeat
-- (run through the possible values of the constant term)
noGenerator : Boolean := true
while noGenerator and l < sizeGF repeat
-- find least c >= c0 such that (-1)^n c0 is primitive
primitive?((-1)**n * c)$GF => noGenerator := false
l := l + 1
c := index(l :: PI)$GF
noGenerator => return "failed"
constterm : Rec := [0, c]$Rec
if c = c0 and weight > 1 then
headpol : Repr := rest reverse fcopy -- [[i0,f{i0}],...,[n,1]]
-- fi is non-zero for i>0
-- the zeroes in the headlookuplist stand for the fi
-- whose lookup's were not yet computed :
headlookuplist : L NNI := new(weight, 0)
else
-- X**n + c can not be primitive for n > 1 (cf. [LN] p.90,
-- Th. 3.18); next possible polynomial is X**n + X + c
headpol : Repr := [[1,0]$Rec, xn] -- 0*X + X**n
headlookuplist : L NNI := [sizeGF]
s := [0,1]
weight := 2
tailpol : Repr := []
taillookuplist : L NNI := []
notReady : Boolean := true
while notReady repeat
-- (run through the possible weights)
while not empty? headlookuplist repeat
-- find next polynomial in the above order with fixed
-- constant term and weight; assume at this point we have
-- headpol = [[i1,f{i1}], [i2,f{i2}], ... , [n,1]] and
-- tailpol = [[k,fk],...,[k0,fk0]] (k0<...<k<i1<i2<...<n)
term := first headpol
j := first headlookuplist
if j = 0 then j := lookup(term.coeff)$GF
j := j + 1 -- lookup(f{i1})$GF + 1
j rem sizeGF = 0 =>
-- in this case one has to increase f{i2}
tailpol := cons(term, tailpol) -- [[i1,f{i1}],...,[k0,f{k0}]]
headpol := rest headpol -- [[i2,f{i2}],...,[n,1]]
taillookuplist := cons(j, taillookuplist)
headlookuplist := rest headlookuplist
-- otherwise set f{i1} := index(j)$GF
setelt(first headpol, coeff, index(j :: PI)$GF)
setfirst!(headlookuplist, j)
if empty? taillookuplist then
pol := revListToSUP cons(constterm, headpol)
--
-- may be improved by excluding reciprocal polynomials
--
primitive? pol => return pol
else
-- go back to fk
headpol := cons(first tailpol, headpol) -- [[k,fk],...,[n,1]]
tailpol := rest tailpol
headlookuplist := cons(first taillookuplist,
headlookuplist)
taillookuplist := rest taillookuplist
if weight = n then notReady := false
else
-- must search for polynomial with greater weight
if empty? s then -- compute s(f)
restfcopy := rest fcopy
for entry in restfcopy repeat s := cons(entry.expnt, s)
s1 := nextSubset(rest s, n1) :: L NNI
s := cons(0, s1)
weight := #s
taillookuplist := []
headlookuplist := cons(sizeGF, new((weight-2) :: NNI, 1))
tailpol := []
-- headpol = [[s.2,0], [s.3,1], ... , [s.weight,1], [n,1]] :
headpol := [[first s1, 0]$Rec]
while not empty? (s1 := rest s1) repeat
headpol := cons([first s1, 1]$Rec, headpol)
headpol := reverse cons([n, 1]$Rec, headpol)
-- next polynomial must have greater constant term
l := l + 1
c := index(l :: PI)$GF
"failed"
nextNormalPoly f ==
n : NNI := degree f
n = 0 => error "polynomial must have positive degree"
-- make f monic
if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
-- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
-- then fRepr := [[n,fn], ... , [i0,f{i0}]]
fRepr : Repr := f pretend Repr
fcopy : Repr := []
-- we can not simply write fcopy := copy fRepr because
-- the input(!) f would be modified by assigning
-- a new value to one of its records
term : Rec
for term: free in fRepr repeat
fcopy := cons(copy term, fcopy)
if term.expnt ~= 0 then
term := [0,0]$Rec
fcopy := cons(term, fcopy)
fcopy := reverse fcopy -- [[n,1], [r,fr], ... , [0,f0]]
xn : Rec := first fcopy
middlepol : Repr := rest fcopy -- [[r,fr], ... , [0,f0]]
a0 : GF := (first middlepol).coeff -- fr
l : NNI := lookup(a0)$GF rem sizeGF
n = 1 =>
-- the polynomial X + a is normal if and only if a is not zero
l = sizeGF - 1 => "failed"
[xn, [0, index((l+1) :: PI)$GF]$Rec] pretend SUP
n1 : NNI := (n - 1) :: NNI
n2 : NNI := (n1 - 1) :: NNI
-- if the polynomial X**n + a * X**(n-1) + ... is normal then
-- a = -(x + x**q +...+ x**(q**n)) can not be zero (where q = #GF)
a : GF := a0
-- if a = 0 then set a := 1
if l = 0 then
l := 1
a := 1$GF
while l < sizeGF repeat
-- (run through the possible values of a)
if a = a0 then
-- middlepol = [[0,f0], ... , [m,fm]] with m < n-1
middlepol := reverse rest middlepol
weight : NNI := #middlepol -- #s(f) as explained above
-- the zeroes in the middlelookuplist stand for the fi
-- whose lookup's were not yet computed :
middlelookuplist : L NNI := new(weight, 0)
s : L NNI := [] -- we will compute s(f) only if necessary
else
middlepol := [[0,0]$Rec]
middlelookuplist : L NNI := [sizeGF]
s : L NNI := [0]
weight : NNI := 1
headpol : Repr := [xn, [n1, a]$Rec] -- X**n + a * X**(n-1)
tailpol : Repr := []
taillookuplist : L NNI := []
notReady : Boolean := true
while notReady repeat
-- (run through the possible weights)
while not empty? middlelookuplist repeat
-- find next polynomial in the above order with fixed
-- a and weight; assume at this point we have
-- middlepol = [[i1,f{i1}], [i2,f{i2}], ... , [m,fm]] and
-- tailpol = [[k,fk],...,[0,f0]] ( with k<i1<i2<...<m)
term := first middlepol
j := first middlelookuplist
if j = 0 then j := lookup(term.coeff)$GF
j := j + 1 -- lookup(f{i1})$GF + 1
j rem sizeGF = 0 =>
-- in this case one has to increase f{i2}
-- tailpol = [[i1,f{i1}],...,[0,f0]]
tailpol := cons(term, tailpol)
middlepol := rest middlepol -- [[i2,f{i2}],...,[m,fm]]
taillookuplist := cons(j, taillookuplist)
middlelookuplist := rest middlelookuplist
-- otherwise set f{i1} := index(j)$GF
setelt(first middlepol, coeff, index(j :: PI)$GF)
setfirst!(middlelookuplist, j)
if empty? taillookuplist then
pol := listToSUP append(headpol, reverse middlepol)
--
-- may be improved by excluding reciprocal polynomials
--
normal? pol => return pol
else
-- go back to fk
-- middlepol = [[k,fk],...,[m,fm]]
middlepol := cons(first tailpol, middlepol)
tailpol := rest tailpol
middlelookuplist := cons(first taillookuplist,
middlelookuplist)
taillookuplist := rest taillookuplist
if weight = n1 then notReady := false
else
-- must search for polynomial with greater weight
if empty? s then -- compute s(f)
restfcopy := rest rest fcopy
for entry in restfcopy repeat s := cons(entry.expnt, s)
s1 := nextSubset(rest s, n2) :: L NNI
s := cons(0, s1)
weight := #s
taillookuplist := []
middlelookuplist := cons(sizeGF, new((weight-1) :: NNI, 1))
tailpol := []
-- middlepol = [[0,0], [s.2,1], ... , [s.weight,1]] :
middlepol := []
s1 := reverse s1
while not empty? s1 repeat
middlepol := cons([first s1, 1]$Rec, middlepol)
s1 := rest s1
middlepol := cons([0,0]$Rec, middlepol)
-- next polynomial must have greater a
l := l + 1
a := index(l :: PI)$GF
"failed"
nextNormalPrimitivePoly f ==
n : NNI := degree f
n = 0 => error "polynomial must have positive degree"
-- make f monic
if not one?(lcf := leadingCoefficient f) then f := (inv lcf) * f
-- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero
-- then fRepr := [[n,fn], ... , [i0,f{i0}]]
fRepr : Repr := f pretend Repr
fcopy : Repr := []
-- we can not simply write fcopy := copy fRepr because
-- the input(!) f would be modified by assigning
-- a new value to one of its records
term : Rec
for term: free in fRepr repeat
fcopy := cons(copy term, fcopy)
if term.expnt ~= 0 then
term := [0,0]$Rec
fcopy := cons(term, fcopy)
fcopy := reverse fcopy -- [[n,1], [r,fr], ... , [0,f0]]
xn : Rec := first fcopy
c0 : GF := term.coeff
lc : NNI := lookup(c0)$GF rem sizeGF
n = 1 =>
-- the polynomial X + c is primitive if and only if -c
-- is a primitive element of GF
q1 : NNI := (sizeGF - 1) :: NNI
while lc < q1 repeat -- find next c such that -c is primitive
lc := lc + 1
c := index(lc :: PI)$GF
primitive?(-c)$GF =>
return [xn, [0,c]$Rec] pretend SUP
"failed"
n1 : NNI := (n - 1) :: NNI
n2 : NNI := (n1 - 1) :: NNI
middlepol : Repr := rest fcopy -- [[r,fr],...,[i0,f{i0}],[0,f0]]
a0 : GF := (first middlepol).coeff
la : NNI := lookup(a0)$GF rem sizeGF
-- if the polynomial X**n + a * X**(n-1) +...+ c is primitive and
-- normal over GF then (-1)**n * c is a primitive element of GF
-- (cf. [LN] p.90, Th. 3.18), and a = -(x + x**q +...+ x**(q**n))
-- is not zero (where q = #GF)
c : GF := c0
a : GF := a0
-- if a = 0 then set a := 1
if la = 0 then
la := 1
a := 1$GF
while lc < sizeGF repeat
-- (run through the possible values of the constant term)
noGenerator : Boolean := true
while noGenerator and lc < sizeGF repeat
-- find least c >= c0 such that (-1)**n * c0 is primitive
primitive?((-1)**n * c)$GF => noGenerator := false
lc := lc + 1
c := index(lc :: PI)$GF
noGenerator => return "failed"
constterm : Rec := [0, c]$Rec
while la < sizeGF repeat
-- (run through the possible values of a)
headpol : Repr := [xn, [n1, a]$Rec] -- X**n + a X**(n-1)
if c = c0 and a = a0 then
-- middlepol = [[i0,f{i0}], ... , [m,fm]] with m < n-1
middlepol := rest reverse rest middlepol
weight : NNI := #middlepol + 1 -- #s(f)+1 as explained above
-- the zeroes in the middlelookuplist stand for the fi
-- whose lookup's were not yet computed :
middlelookuplist : L NNI := new((weight-1) :: NNI, 0)
s : L NNI := [] -- we will compute s(f) only if necessary
else
pol := listToSUP append(headpol, [constterm])
normal? pol and primitive? pol => return pol
middlepol := [[1,0]$Rec]
middlelookuplist : L NNI := [sizeGF]
s : L NNI := [0,1]
weight : NNI := 2
tailpol : Repr := []
taillookuplist : L NNI := []
notReady : Boolean := true
while notReady repeat
-- (run through the possible weights)
while not empty? middlelookuplist repeat
-- find next polynomial in the above order with fixed
-- c, a and weight; assume at this point we have
-- middlepol = [[i1,f{i1}], [i2,f{i2}], ... , [m,fm]]
-- tailpol = [[k,fk],...,[k0,fk0]] (k0<...<k<i1<...<m)
term := first middlepol
j := first middlelookuplist
if j = 0 then j := lookup(term.coeff)$GF
j := j + 1 -- lookup(f{i1})$GF + 1
j rem sizeGF = 0 =>
-- in this case one has to increase f{i2}
-- tailpol = [[i1,f{i1}],...,[k0,f{k0}]]
tailpol := cons(term, tailpol)
middlepol := rest middlepol -- [[i2,f{i2}],...,[m,fm]]
taillookuplist := cons(j, taillookuplist)
middlelookuplist := rest middlelookuplist
-- otherwise set f{i1} := index(j)$GF
setelt(first middlepol, coeff, index(j :: PI)$GF)
setfirst!(middlelookuplist, j)
if empty? taillookuplist then
pol := listToSUP append(headpol, reverse
cons(constterm, middlepol))
--
-- may be improved by excluding reciprocal polynomials
--
normal? pol and primitive? pol => return pol
else
-- go back to fk
-- middlepol = [[k,fk],...,[m,fm]]
middlepol := cons(first tailpol, middlepol)
tailpol := rest tailpol
middlelookuplist := cons(first taillookuplist,
middlelookuplist)
taillookuplist := rest taillookuplist
if weight = n1 then notReady := false
else
-- must search for polynomial with greater weight
if empty? s then -- compute s(f)
restfcopy := rest rest fcopy
for entry in restfcopy repeat s := cons(entry.expnt, s)
s1 := nextSubset(rest s, n2) :: L NNI
s := cons(0, s1)
weight := #s
taillookuplist := []
middlelookuplist := cons(sizeGF, new((weight-2)::NNI, 1))
tailpol := []
-- middlepol = [[s.2,0], [s.3,1], ... , [s.weight,1] :
middlepol := [[first s1, 0]$Rec]
while not empty? (s1 := rest s1) repeat
middlepol := cons([first s1, 1]$Rec, middlepol)
middlepol := reverse middlepol
-- next polynomial must have greater a
la := la + 1
a := index(la :: PI)$GF
-- next polynomial must have greater constant term
lc := lc + 1
c := index(lc :: PI)$GF
la := 1
a := 1$GF
"failed"
nextPrimitiveNormalPoly f == nextNormalPrimitivePoly f
createIrreduciblePoly n ==
x := monomial(1,1)$SUP
n = 1 => x
xn := monomial(1,n)$SUP
n >= sizeGF => nextIrreduciblePoly(xn + x) :: SUP
-- (since in this case there is most no irreducible binomial X+a)
odd? n => nextIrreduciblePoly(xn + 1) :: SUP
nextIrreduciblePoly(xn) :: SUP
createPrimitivePoly n ==
-- (see also the comments in the code of nextPrimitivePoly)
xn := monomial(1,n)$SUP
n = 1 => xn + monomial(-primitiveElement()$GF, 0)$SUP
c0 : GF := (-1)**n * primitiveElement()$GF
constterm : Rec := [0, c0]$Rec
-- try first (probably faster) the polynomials
-- f = X**n + f{n-1}*X**(n-1) +...+ f1*X + c0 for which
-- fi is 0 or 1 for i=1,...,n-1,
-- and this in the order used to define nextPrimitivePoly
s : L NNI := [0,1]
weight : NNI := 2
s1 : L NNI := [1]
n1 : NNI := (n - 1) :: NNI
notReady : Boolean := true
while notReady repeat
polRepr : Repr := [constterm]
while not empty? s1 repeat
polRepr := cons([first s1, 1]$Rec, polRepr)
s1 := rest s1
polRepr := cons([n, 1]$Rec, polRepr)
--
-- may be improved by excluding reciprocal polynomials
--
primitive? (pol := listToSUP polRepr) => return pol
if weight = n then notReady := false
else
s1 := nextSubset(rest s, n1) :: L NNI
s := cons(0, s1)
weight := #s
-- if there is no primitive f of the above form
-- search now from the beginning, allowing arbitrary
-- coefficients f_i, i = 1,...,n-1
nextPrimitivePoly(xn + monomial(c0, 0)$SUP) :: SUP
createNormalPoly n ==
n = 1 => monomial(1,1)$SUP + monomial(-1,0)$SUP
-- get a normal polynomial f = X**n + a * X**(n-1) + ...
-- with a = -1
-- [recall that if f is normal over the field GF of order q
-- then a = -(x + x**q +...+ x**(q**n)) can not be zero;
-- hence the existence of such an f follows from the
-- normal basis theorem ([LN] p.60, Th. 2.35) and the
-- surjectivity of the trace ([LN] p.55, Th. 2.23 (iii))]
nextNormalPoly(monomial(1,n)$SUP
+ monomial(-1, (n-1) :: NNI)$SUP) :: SUP
createNormalPrimitivePoly n ==
xn := monomial(1,n)$SUP
n = 1 => xn + monomial(-primitiveElement()$GF, 0)$SUP
n1 : NNI := (n - 1) :: NNI
c0 : GF := (-1)**n * primitiveElement()$GF
constterm := monomial(c0, 0)$SUP
-- try first the polynomials f = X**n + a * X**(n-1) + ...
-- with a = -1
pol := xn + monomial(-1, n1)$SUP + constterm
normal? pol and primitive? pol => pol
res := nextNormalPrimitivePoly(pol)
res case SUP => res
-- if there is no normal primitive f with a = -1
-- get now one with arbitrary (non-zero) a
-- (the existence is proved in [LS])
pol := xn + monomial(1, n1)$SUP + constterm
normal? pol and primitive? pol => pol
nextNormalPrimitivePoly(pol) :: SUP
createPrimitiveNormalPoly n == createNormalPrimitivePoly n
-- qAdicExpansion m ==
-- ragits : List I := wholeRagits(m :: (RadixExpansion sizeGF))
-- pol : SUP := 0
-- expt : NNI := #ragits
-- for i in ragits repeat
-- expt := (expt - 1) :: NNI
-- if i ~= 0 then pol := pol + monomial(index(i::PI)$GF, expt)
-- pol
-- random == qAdicExpansion(random()$I)
-- random n ==
-- pol := monomial(1,n)$SUP
-- n1 : NNI := (n - 1) :: NNI
-- for i in 0..n1 repeat
-- if (c := random()$GF) ~= 0 then
-- pol := pol + monomial(c, i)$SUP
-- pol
random n ==
polRepr : Repr := []
n1 : NNI := (n - 1) :: NNI
for i in 0..n1 repeat
if (c := random()$GF) ~= 0 then
polRepr := cons([i, c]$Rec, polRepr)
cons([n, 1$GF]$Rec, polRepr) pretend SUP
random(m,n) ==
if m > n then (m,n) := (n,m)
d : NNI := (n - m) :: NNI
if d > 1 then n := ((random()$I rem (d::PI)) + m) :: PI
random(n)
@
\begin{verbatim}
-- 12.05.92: JG: long lines
-- 25.02.92: AS: normal? changed. Now using reducedQPowers
-- 05.04.91: JG: error in createNormalPrimitivePoly was corrected
\end{verbatim}
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package FFPOLY FiniteFieldPolynomialPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|