1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra fff.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
-- 12.03.92: AS: generalized createLowComplexityTable
-- 25.02.92: AS: added functions:
-- createLowComplexityTable: PI -> Union(Vector List TERM,"failed")
-- createLowComplexityNormalBasis: PI -> Union(SUP, V L TERM)
-- Finite Field Functions
\end{verbatim}
\section{package FFF FiniteFieldFunctions}
<<package FFF FiniteFieldFunctions>>=
)abbrev package FFF FiniteFieldFunctions
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 21 March 1991
++ Date Last Updated: 31 March 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ References:
++ Lidl, R. & Niederreiter, H., "Finite Fields",
++ Encycl. of Math. 20, Addison-Wesley, 1983
++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++ AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++ FiniteFieldFunctions(GF) is a package with functions
++ concerning finite extension fields of the finite ground field {\em GF},
++ e.g. Zech logarithms.
++ Keywords: finite field, Zech logarithm, Jacobi logarithm, normal basis
FiniteFieldFunctions(GF): Exports == Implementation where
GF : FiniteFieldCategory -- the ground field
PI ==> PositiveInteger
NNI ==> NonNegativeInteger
I ==> Integer
SI ==> SingleInteger
SUP ==> SparseUnivariatePolynomial GF
V ==> Vector
M ==> Matrix
L ==> List
OUT ==> OutputForm
SAE ==> SimpleAlgebraicExtension
ARR ==> PrimitiveArray(SI)
TERM ==> Record(value:GF,index:SI)
MM ==> ModMonic(GF,SUP)
PF ==> PrimeField
Exports ==> with
createZechTable: SUP -> ARR
++ createZechTable(f) generates a Zech logarithm table for the cyclic
++ group representation of a extension of the ground field by the
++ primitive polynomial {\em f(x)}, i.e. \spad{Z(i)},
++ defined by {\em x**Z(i) = 1+x**i} is stored at index i.
++ This is needed in particular
++ to perform addition of field elements in finite fields represented
++ in this way. See \spadtype{FFCGP}, \spadtype{FFCGX}.
createMultiplicationTable: SUP -> V L TERM
++ createMultiplicationTable(f) generates a multiplication
++ table for the normal basis of the field extension determined
++ by {\em f}. This is needed to perform multiplications
++ between elements represented as coordinate vectors to this basis.
++ See \spadtype{FFNBP}, \spadtype{FFNBX}.
createMultiplicationMatrix: V L TERM -> M GF
++ createMultiplicationMatrix(m) forms the multiplication table
++ {\em m} into a matrix over the ground field.
-- only useful for the user to visualise the multiplication table
-- in a nice form
sizeMultiplication: V L TERM -> NNI
++ sizeMultiplication(m) returns the number of entries
++ of the multiplication table {\em m}.
-- the time of the multiplication of field elements depends
-- on this size
createLowComplexityTable: PI -> Union(Vector List TERM,"failed")
++ createLowComplexityTable(n) tries to find
++ a low complexity normal basis of degree {\em n} over {\em GF}
++ and returns its multiplication matrix
++ Fails, if it does not find a low complexity basis
createLowComplexityNormalBasis: PI -> Union(SUP, V L TERM)
++ createLowComplexityNormalBasis(n) tries to find a
++ a low complexity normal basis of degree {\em n} over {\em GF}
++ and returns its multiplication matrix
++ If no low complexity basis is found it calls
++ \axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(n) to produce a normal
++ polynomial of degree {\em n} over {\em GF}
Implementation ==> add
createLowComplexityNormalBasis(n) ==
(u:=createLowComplexityTable(n)) case "failed" =>
createNormalPoly(n)$FiniteFieldPolynomialPackage(GF)
u::(V L TERM)
-- try to find a low complexity normal basis multiplication table
-- of the field of extension degree n
-- the algorithm is from:
-- Wassermann A., Konstruktion von Normalbasen,
-- Bayreuther Mathematische Schriften 31 (1989),1-9.
createLowComplexityTable(n) ==
q:=size()$GF
-- this algorithm works only for prime fields
p:=characteristic$GF
-- search of a suitable parameter k
k:NNI:=0
a:NNI
t1: PF(k*n+1) -- all that matters is the syntax of the type
for i in 1..n-1 while (k=0) repeat
if prime?(i*n+1) and not(p = (i*n+1)) then
primitive?(q::PF(i*n+1))$PF(i*n+1) =>
a := 1
k:=i
t1:PF(k*n+1):=(q::PF(k*n+1))**n
gcd(n,a:=discreteLog(q::PF(n*i+1))$PF(n*i+1))$I = 1 =>
k:=i
t1:=primitiveElement()$PF(k*n+1)**n
k = 0 => "failed"
-- initialize some start values
multmat:M PF(p):=zero(n,n)
p1:=(k*n+1)
pkn:=q::PF(p1)
t:=t1 pretend PF(p1)
if odd?(k) then
jt:I:=(n quo 2)+1
vt:I:=positiveRemainder((k-a) quo 2,k)+1
else
jt:I:=1
vt:I:=(k quo 2)+1
-- compute matrix
vec:Vector I:=zero(p1 pretend NNI)
for x in 1..k repeat
for l in 1..n repeat
vec.((t**(x-1) * pkn**(l-1)) pretend Integer+1):=_
positiveRemainder(l,p1)
lvj:M I:=zero(k::NNI,n)
for v in 1..k repeat
for j in 1..n repeat
if (j~=jt) or (v~=vt) then
help:PF(p1):=t**(v-1)*pkn**(j-1)+1@PF(p1)
setelt(lvj,v,j,vec.(help pretend I +1))
for j in 1..n repeat
if j~=jt then
for v in 1..k repeat
lvjh:=elt(lvj,v,j)
setelt(multmat,j,lvjh,elt(multmat,j,lvjh)+1)
for i in 1..n repeat
setelt(multmat,jt,i,positiveRemainder(-k,p)::PF(p))
for v in 1..k repeat
if v~=vt then
lvjh:=elt(lvj,v,jt)
setelt(multmat,jt,lvjh,elt(multmat,jt,lvjh)+1)
-- multmat
m:=nrows(multmat)$(M PF(p))
multtable:V L TERM:=new(m,nil()$(L TERM))$(V L TERM)
for i in 1..m repeat
l:L TERM:=nil()$(L TERM)
v:V PF(p):=row(multmat,i)
for j in (1::I)..(m::I) repeat
if (v.j ~= 0) then
-- take -v.j to get trace 1 instead of -1
term:TERM:=[(convert(-v.j)@I)::GF,(j-2) pretend SI]$TERM
l:=cons(term,l)$(L TERM)
qsetelt_!(multtable,i,copy l)$(V L TERM)
multtable
sizeMultiplication(m) ==
s:NNI:=0
for i in 1..#m repeat
s := s + #(m.i)
s
createMultiplicationTable(f:SUP) ==
sizeGF:NNI:=size()$GF -- the size of the ground field
m:PI:=degree(f)$SUP pretend PI
m=1 =>
[[[-coefficient(f,0)$SUP,(-1)::SI]$TERM]$(L TERM)]::(V L TERM)
m1:I:=m-1
-- initialize basis change matrices
setPoly(f)$MM
e:=reduce(monomial(1,1)$SUP)$MM ** sizeGF
w:=1$MM
qpow:PrimitiveArray(MM):=new(m,0)
qpow.0:=1$MM
for i in 1..m1 repeat
qpow.i:=(w:=w*e)
-- qpow.i = x**(i*q)
qexp:PrimitiveArray(MM):=new(m,0)
qexp.0:=reduce(monomial(1,1)$SUP)$MM
mat:M GF:=zero(m,m)$(M GF)
qsetelt_!(mat,2,1,1$GF)$(M GF)
h:=qpow.1
qexp.1:=h
setColumn_!(mat,2,Vectorise(h)$MM)$(M GF)
for i in 2..m1 repeat
g:=0$MM
while h ~= 0 repeat
g:=g + leadingCoefficient(h) * qpow.degree(h)$MM
h:=reductum(h)$MM
qexp.i:=g
setColumn_!(mat,i+1,Vectorise(h:=g)$MM)$(M GF)
-- loop invariant: qexp.i = x**(q**i)
mat1:=inverse(mat)$(M GF)
mat1 = "failed" =>
error "createMultiplicationTable: polynomial must be normal"
mat:=mat1 :: (M GF)
-- initialize multiplication table
multtable:V L TERM:=new(m,nil()$(L TERM))$(V L TERM)
for i in 1..m repeat
l:L TERM:=nil()$(L TERM)
v:V GF:=mat *$(M GF) Vectorise(qexp.(i-1) *$MM qexp.0)$MM
for j in (1::SI)..(m::SI) repeat
if (v.j ~= 0$GF) then
term:TERM:=[(v.j),j-(2::SI)]$TERM
l:=cons(term,l)$(L TERM)
qsetelt_!(multtable,i,copy l)$(V L TERM)
multtable
createZechTable(f:SUP) ==
sizeGF:NNI:=size()$GF -- the size of the ground field
m:=degree(f)$SUP::PI
qm1:SI:=(sizeGF ** m -1) pretend SI
zechlog:ARR:=new(((sizeGF ** m + 1) quo 2)::NNI,-1::SI)$ARR
helparr:ARR:=new(sizeGF ** m::NNI,0$SI)$ARR
primElement:=reduce(monomial(1,1)$SUP)$SAE(GF,SUP,f)
a:=primElement
for i in 1..qm1-1 repeat
helparr.(lookup(a -$SAE(GF,SUP,f) 1$SAE(GF,SUP,f)_
)$SAE(GF,SUP,f)):=i::SI
a:=a * primElement
characteristic$GF = 2 =>
a:=primElement
for i in 1..(qm1 quo 2) repeat
zechlog.i:=helparr.lookup(a)$SAE(GF,SUP,f)
a:=a * primElement
zechlog
a:=1$SAE(GF,SUP,f)
for i in 0..((qm1-2) quo 2) repeat
zechlog.i:=helparr.lookup(a)$SAE(GF,SUP,f)
a:=a * primElement
zechlog
createMultiplicationMatrix(m) ==
n:NNI:=#m
mat:M GF:=zero(n,n)$(M GF)
for i in 1..n repeat
for t in m.i repeat
qsetelt_!(mat,i,t.index+2,t.value)
mat
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package FFF FiniteFieldFunctions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|