aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/ffcg.spad.pamphlet
blob: 54eead9b20e41dbc6992e13fc13e41fc35050123 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra ffcg.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
-- 28.01.93: AS and JG: setting of initzech? and initelt? flags in
--    functions initializeZech and initializeElt put at the
--    end to avoid errors with interruption.
--    factorsOfCyclicGroupSize() changed.
-- 12.05.92: JG: long lines
-- 25.02.92: AS: added functions order and primitive?
-- 19.02.92: AS: implementation of basis:PI -> Vector $ changed .
-- 17.02.92: AS: implementation of coordinates corrected.
-- 10.02.92: AS: implementation of coerce:GF -> $ corrected.
-- 05.08.91: JG: AS implementation of missing functions in FFC and FAXF


-- finite field represented by it's cyclic group and 'zero' as an
-- extra element
\end{verbatim}

\section{domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial}

<<domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial>>=
import SingleInteger
import PrimitiveArray
)abbrev domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 26.03.1991
++ Date Last Updated: 31 March 1991
++ Basic Operations:
++ Related Constructors: FiniteFieldFunctions
++ Also See: FiniteFieldExtensionByPolynomial,
++  FiniteFieldNormalBasisExtensionByPolynomial
++ AMS Classifications:
++ Keywords: finite field, primitive elements, cyclic group
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol)  implements a
++  finite extension field of the ground field {\em GF}. Its elements are
++  represented by powers of a primitive element, i.e. a generator of the
++  multiplicative (cyclic) group. As primitive
++  element we choose the root of the extension polynomial {\em defpol},
++  which MUST be primitive (user responsibility). Zech logarithms are stored
++  in a table of size half of the field size, and use \spadtype{SingleInteger}
++  for representing field elements, hence, there are restrictions
++  on the size of the field.


FiniteFieldCyclicGroupExtensionByPolynomial(GF,defpol):_
  Exports == Implementation where
  GF    : FiniteFieldCategory                -- the ground field
  defpol: SparseUnivariatePolynomial GF      -- the extension polynomial
  -- the root of defpol is used as the primitive element

  PI    ==> PositiveInteger
  NNI   ==> NonNegativeInteger
  I     ==> Integer
  SI    ==> SingleInteger
  SUP   ==> SparseUnivariatePolynomial
  SAE   ==> SimpleAlgebraicExtension(GF,SUP GF,defpol)
  V     ==> Vector GF
  FFP   ==> FiniteFieldExtensionByPolynomial(GF,defpol)
  FFF   ==> FiniteFieldFunctions(GF)
  OUT   ==> OutputForm
  ARR   ==> PrimitiveArray(SI)
  TBL   ==> Table(PI,NNI)


  Exports ==> FiniteAlgebraicExtensionField(GF)  with

    getZechTable:() -> ARR
      ++ getZechTable() returns the zech logarithm table of the field
      ++ it is used to perform additions in the field quickly.
  Implementation ==>  add

-- global variables ===================================================

    Rep:= SI
    -- elements are represented by small integers in the range
    -- (-1)..(size()-2). The (-1) representing the field element zero,
    -- the other small integers representing the corresponding power
    -- of the primitive element, the root of the defining polynomial

    -- it would be very nice if we could use the representation
    -- Rep:= Union("zero", IntegerMod(size()$GF ** degree(defpol) -1)),
    -- why doesn't the compiler like this ?

    extdeg:NNI  :=degree(defpol)$(SUP GF)::NNI
    -- the extension degree

    sizeFF:NNI:=(size()$GF ** extdeg) pretend NNI
    -- the size of the field

    if sizeFF > 2**20 then
      error "field too large for this representation"

    sizeCG:SI:=(sizeFF - 1) pretend SI
    -- the order of the cyclic group

    sizeFG:SI:=(sizeCG quo (size()$GF-1)) pretend SI
    -- the order of the factor group


    zechlog:ARR:=new(((sizeFF+1) quo 2)::NNI,-1::SI)$ARR
    -- the table for the zech logarithm

    alpha :=new()$Symbol :: OutputForm
    -- get a new symbol for the output representation of
    -- the elements

    primEltGF:GF:=
      odd?(extdeg)$I => -$GF coefficient(defpol,0)$(SUP GF)
      coefficient(defpol,0)$(SUP GF)
    -- the corresponding primitive element of the groundfield
    -- equals the trace of the primitive element w.r.t. the groundfield

    facOfGroupSize := nil()$(List Record(factor:Integer,exponent:Integer))
    -- the factorization of sizeCG

    initzech?:Boolean:=true
    -- gets false after initialization of the zech logarithm array

    initelt?:Boolean:=true
    -- gets false after initialization of the normal element

    normalElt:SI:=0
    -- the global variable containing a normal element

-- functions ==========================================================

    -- for completeness we have to give a dummy implementation for
    -- 'tableForDiscreteLogarithm', although this function is not
    -- necessary in the cyclic group representation case

    tableForDiscreteLogarithm(fac) == table()$TBL


    getZechTable() == zechlog
    initializeZech:() -> Void
    initializeElt: () -> Void

    order(x:$):PI ==
      zero?(x) =>
        error"order: order of zero undefined"
      (sizeCG quo gcd(sizeCG,x pretend NNI))::PI

    primitive?(x:$) ==
      zero?(x) or one?(x) => false
      gcd(x::Rep,sizeCG)$Rep = 1$Rep => true
      false

    coordinates(x:$) ==
      x=0 => new(extdeg,0)$(Vector GF)
      primElement:SAE:=convert(monomial(1,1)$(SUP GF))$SAE
-- the primitive element in the corresponding algebraic extension
      coordinates(primElement **$SAE (x pretend SI))$SAE

    x:$ + y:$ ==
      if initzech? then initializeZech()
      zero? x => y
      zero? y => x
      d:Rep:=positiveRemainder(y -$Rep x,sizeCG)$Rep
      (d pretend SI) <= shift(sizeCG,-$SI (1$SI)) =>
        zechlog.(d pretend SI) =$SI -1::SI => 0
        addmod(x,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep
      --d:Rep:=positiveRemainder(x -$Rep y,sizeCG)$Rep
      d:Rep:=(sizeCG -$SI d)::Rep
      addmod(y,zechlog.(d pretend SI) pretend Rep,sizeCG)$Rep
      --positiveRemainder(x +$Rep zechlog.(d pretend SI) -$Rep d,sizeCG)$Rep


    initializeZech() ==
      zechlog:=createZechTable(defpol)$FFF
      -- set initialization flag
      initzech? := false

    basis(n:PI) ==
      extensionDegree() rem n ~= 0 =>
        error("argument must divide extension degree")
      m:=sizeCG quo (size()$GF**n-1)
      [index((1+i*m) ::PI) for i in 0..(n-1)]::Vector $

    n:I * x:$ == ((n::GF)::$) * x

    minimalPolynomial(a) ==
      f:SUP $:=monomial(1,1)$(SUP $) - monomial(a,0)$(SUP $)
      u:$:=Frobenius(a)
      while not(u = a) repeat
        f:=f * (monomial(1,1)$(SUP $) - monomial(u,0)$(SUP $))
        u:=Frobenius(u)
      p:SUP GF:=0$(SUP GF)
      while not zero?(f)$(SUP $) repeat
        g:GF:=retract(leadingCoefficient(f)$(SUP $))
        p:=p+monomial(g,_
                      degree(f)$(SUP $))$(SUP GF)
        f:=reductum(f)$(SUP $)
      p

    factorsOfCyclicGroupSize() ==
      if empty? facOfGroupSize then initializeElt()
      facOfGroupSize

    representationType() == "cyclic"

    definingPolynomial() == defpol

    random() ==
      positiveRemainder(random()$Rep,sizeFF pretend Rep)$Rep -$Rep 1$Rep

    represents(v) ==
      u:FFP:=represents(v)$FFP
      u =$FFP 0$FFP => 0
      discreteLog(u)$FFP pretend Rep



    coerce(e:GF):$ ==
      zero?(e)$GF => 0
      log:I:=discreteLog(primEltGF,e)$GF::NNI *$I sizeFG
      -- version before 10.20.92: log pretend Rep
      -- 1$GF is coerced to sizeCG pretend Rep by old version
      -- now 1$GF is coerced to 0$Rep which is correct.
      positiveRemainder(log,sizeCG) pretend Rep


    retractIfCan(x:$) ==
      zero? x => 0$GF
      u:= (x::Rep) exquo$Rep (sizeFG pretend Rep)
      u = "failed" => "failed"
      primEltGF **$GF ((u::$) pretend SI)

    retract(x:$) ==
      a:=retractIfCan(x)
      a="failed" => error "element not in groundfield"
      a :: GF

    basis() == [index(i :: PI) for i in 1..extdeg]::Vector $


    inGroundField?(x) ==
      zero? x=> true
      positiveRemainder(x::Rep,sizeFG pretend Rep)$Rep =$Rep 0$Rep => true
      false

    discreteLog(b:$,x:$) ==
      zero? x => "failed"
      e:= extendedEuclidean(b,sizeCG,x)$Rep
      e = "failed" => "failed"
      e1:Record(coef1:$,coef2:$) := e :: Record(coef1:$,coef2:$)
      positiveRemainder(e1.coef1,sizeCG)$Rep pretend NNI

    - x:$ ==
        zero? x => 0
        characteristic$% =$I 2 => x
        addmod(x,shift(sizeCG,-1)$SI pretend Rep,sizeCG)

    generator() == 1$SI
    createPrimitiveElement() == 1$SI
    primitiveElement() == 1$SI

    discreteLog(x:$) ==
      zero? x => error "discrete logarithm error"
      x pretend NNI

    normalElement() ==
      if initelt? then initializeElt()
      normalElt::$

    initializeElt() ==
      facOfGroupSize := factors(factor(sizeCG)$Integer)
      normalElt:=createNormalElement() pretend SI
      initelt?:=false

    extensionDegree(): PositiveInteger == extdeg pretend PI

    characteristic == characteristic$GF

    lookup(x:$) ==
      x =$Rep (-$Rep 1$Rep) => sizeFF pretend PI
      (x +$Rep 1$Rep) pretend PI

    index(a:PI) ==
      positiveRemainder(a,sizeFF)$I pretend Rep -$Rep 1$Rep

    0 == (-$Rep 1$Rep)

    1 == 0$Rep

-- to get a "exponent like" output form
    coerce(x:$):OUT ==
      x =$Rep (-$Rep 1$Rep) => "0"::OUT
      x =$Rep 0$Rep => "1"::OUT
      y:I:=lookup(x)-1
      alpha **$OUT (y::OUT)

    x:$ = y:$ ==  x =$Rep y

    x:$ * y:$ ==
      x = 0 => 0
      y = 0 => 0
      addmod(x,y,sizeCG)$Rep

    a:GF * x:$ == coerce(a)@$ * x
    x:$/a:GF == x/coerce(a)@$

--    x:$ / a:GF ==
--      a = 0$GF => error "division by zero"
--      x * inv(coerce(a))

    inv(x:$)  ==
      zero?(x) => error "inv: not invertible"
      one?(x) => 1
      sizeCG -$Rep x

    x:$ ** n:PI == x ** n::I

    x:$ ** n:NNI == x ** n::I

    x:$ ** n:I ==
      m:Rep:=positiveRemainder(n,sizeCG)$I pretend Rep
      m =$Rep 0$Rep => 1
      x = 0 => 0
      mulmod(m,x,sizeCG::Rep)$Rep

@
\section{domain FFCGX FiniteFieldCyclicGroupExtension}
<<domain FFCGX FiniteFieldCyclicGroupExtension>>=
)abbrev domain FFCGX FiniteFieldCyclicGroupExtension
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 04.04.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors:  FiniteFieldCyclicGroupExtensionByPolynomial,
++  FiniteFieldPolynomialPackage
++ Also See: FiniteFieldExtension, FiniteFieldNormalBasisExtension
++ AMS Classifications:
++ Keywords: finite field, primitive elements, cyclic group
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldCyclicGroupExtension(GF,n)  implements a extension of degree n
++  over the ground field {\em GF}. Its elements are represented by powers of
++  a primitive element, i.e. a generator of the multiplicative (cyclic) group.
++  As primitive element we choose the root of the extension polynomial, which
++  is created by {\em createPrimitivePoly} from
++  \spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored
++  in a table of size half of the field size, and use \spadtype{SingleInteger}
++  for representing field elements, hence, there are restrictions
++  on the size of the field.


FiniteFieldCyclicGroupExtension(GF,extdeg):_
  Exports == Implementation where
  GF       : FiniteFieldCategory
  extdeg   : PositiveInteger
  PI       ==> PositiveInteger
  FFPOLY         ==> FiniteFieldPolynomialPackage(GF)
  SI       ==> SingleInteger
  Exports  ==> FiniteAlgebraicExtensionField(GF) with
    getZechTable:() -> PrimitiveArray(SingleInteger)
      ++ getZechTable() returns the zech logarithm table of the field.
      ++ This table is used to perform additions in the field quickly.
  Implementation ==> FiniteFieldCyclicGroupExtensionByPolynomial(GF,_
                          createPrimitivePoly(extdeg)$FFPOLY)

@
\section{domain FFCG FiniteFieldCyclicGroup}
<<domain FFCG FiniteFieldCyclicGroup>>=
)abbrev domain FFCG FiniteFieldCyclicGroup
++ Authors: J.Grabmeier, A.Scheerhorn
++ Date Created: 04.04.1991
++ Date Last Updated:
++ Basic Operations:
++ Related Constructors:  FiniteFieldCyclicGroupExtensionByPolynomial,
++  FiniteFieldPolynomialPackage
++ Also See: FiniteField, FiniteFieldNormalBasis
++ AMS Classifications:
++ Keywords: finite field, primitive elements, cyclic group
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++ Description:
++  FiniteFieldCyclicGroup(p,n) implements a finite field extension of degee n
++  over the prime field with p elements. Its elements are represented by
++  powers of a primitive element, i.e. a generator of the multiplicative
++  (cyclic) group. As primitive element we choose the root of the extension
++  polynomial, which is created by {\em createPrimitivePoly} from
++  \spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored
++  in a table of size half of the field size, and use \spadtype{SingleInteger}
++  for representing field elements, hence, there are restrictions
++  on the size of the field.

FiniteFieldCyclicGroup(p,extdeg):_
  Exports == Implementation where
  p : PositiveInteger
  extdeg   : PositiveInteger
  PI       ==> PositiveInteger
  FFPOLY         ==> FiniteFieldPolynomialPackage(PrimeField(p))
  SI       ==> SingleInteger
  Exports  ==> FiniteAlgebraicExtensionField(PrimeField(p)) with
    getZechTable:() -> PrimitiveArray(SingleInteger)
      ++ getZechTable() returns the zech logarithm table of the field.
      ++ This table is used to perform additions in the field quickly.
  Implementation ==> FiniteFieldCyclicGroupExtensionByPolynomial(PrimeField(p),_
                          createPrimitivePoly(extdeg)$FFPOLY)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain FFCGP FiniteFieldCyclicGroupExtensionByPolynomial>>
<<domain FFCGX FiniteFieldCyclicGroupExtension>>
<<domain FFCG FiniteFieldCyclicGroup>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}