aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/ffcat.spad.pamphlet
blob: 9669856fd76e526a49eddf0bf804fbd3dad78997 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra ffcat.spad}
\author{Johannes Grabmeier, Alfred Scheerhorn, Barry Trager, James Davenport}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\begin{verbatim}
-- 28.01.93: AS and JG:another Error in discreteLog(.,.) in FFIEDLC corrected.
-- 08.05.92: AS  Error in discreteLog(.,.) in FFIEDLC corrected.
-- 03.04.92: AS  Barry Trager added package FFSLPE and some functions to FFIELDC
-- 25.02.92: AS  added following functions in FAXF: impl.of mrepresents,
--               linearAssociatedExp,linearAssociatedLog, linearAssociatedOrder
-- 18.02.92: AS: more efficient version of degree added,
--               first version of degree in FAXF set into comments
-- 18.06.91: AS: general version of minimalPolynomial added
-- 08.05.91: JG, AS implementation of missing functions in FFC and FAXF
-- 04.05.91: JG: comments
-- 04.04.91: JG: old version of charthRoot in FFC was dropped

-- Fields with finite characteristic
\end{verbatim}
\section{category FPC FieldOfPrimeCharacteristic}
<<category FPC FieldOfPrimeCharacteristic>>=
)abbrev category FPC FieldOfPrimeCharacteristic
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 10 March 1991
++ Date Last Updated: 31 March 1991
++ Basic Operations: _+, _*
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: field, finite field, prime characteristic
++ References:
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FieldOfPrimeCharacteristic is the category of fields of prime
++  characteristic, e.g. finite fields, algebraic closures of
++  fields of prime characteristic, transcendental extensions of
++  of fields of prime characteristic.
FieldOfPrimeCharacteristic:Category == _
  Join(Field,CharacteristicNonZero) with
    order: $ -> OnePointCompletion PositiveInteger
      ++ order(a) computes the order of an element in the multiplicative
      ++ group of the field.
      ++ Error: if \spad{a} is 0.
    discreteLog: ($,$) -> Union(NonNegativeInteger,"failed")
      ++ discreteLog(b,a) computes s with \spad{b**s = a} if such an s exists.
    primeFrobenius: $ -> $
      ++ primeFrobenius(a) returns \spad{a ** p} where p is the characteristic.
    primeFrobenius: ($,NonNegativeInteger) -> $
      ++ primeFrobenius(a,s) returns \spad{a**(p**s)} where p
      ++ is the characteristic.
  add
    primeFrobenius(a) == a ** characteristic$%
    primeFrobenius(a,s) == a ** (characteristic$%**s)

@
\section{category XF ExtensionField}
<<category XF ExtensionField>>=
)abbrev category XF ExtensionField
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 10 March 1991
++ Date Last Updated: 31 March 1991
++ Basic Operations: _+, _*, extensionDegree, algebraic?, transcendent?
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: field, extension field
++ References:
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  ExtensionField {\em F} is the category of fields which extend
++  the field F
ExtensionField(F:Field) : Category  == Join(Field,RetractableTo F,VectorSpace F) with
    if F has CharacteristicZero then CharacteristicZero
    if F has CharacteristicNonZero then FieldOfPrimeCharacteristic
    algebraic? : $ -> Boolean
      ++ algebraic?(a) tests whether an element \spad{a} is algebraic with
      ++ respect to the ground field F.
    transcendent? : $ -> Boolean
      ++ transcendent?(a) tests whether an element \spad{a} is transcendent
      ++ with respect to the ground field F.
    inGroundField?: $ -> Boolean
      ++ inGroundField?(a) tests whether an element \spad{a}
      ++ is already in the ground field F.
    degree : $ -> OnePointCompletion PositiveInteger
      ++ degree(a) returns the degree of minimal polynomial of an element
      ++ \spad{a} if \spad{a} is algebraic
      ++ with respect to the ground field F, and \spad{infinity} otherwise.
    extensionDegree : () -> OnePointCompletion PositiveInteger
      ++ extensionDegree() returns the degree of the field extension if the
      ++ extension is algebraic, and \spad{infinity} if it is not.
    transcendenceDegree : () -> NonNegativeInteger
      ++ transcendenceDegree() returns the transcendence degree of the
      ++ field extension, 0 if the extension is algebraic.
    -- perhaps more absolute degree functions
    if F has Finite then
      FieldOfPrimeCharacteristic
      Frobenius: $ -> $
        ++ Frobenius(a) returns \spad{a ** q} where q is the \spad{size()$F}.
      Frobenius:   ($,NonNegativeInteger) -> $
        ++ Frobenius(a,s) returns \spad{a**(q**s)} where q is the size()$F.
  add
    algebraic?(a) == not infinite? (degree(a)@OnePointCompletion_
      (PositiveInteger))$OnePointCompletion(PositiveInteger)
    transcendent? a == infinite?(degree(a)@OnePointCompletion _
      (PositiveInteger))$OnePointCompletion(PositiveInteger)
    if F has Finite then
      Frobenius(a) == a ** size()$F
      Frobenius(a,s) == a ** (size()$F ** s)

@

\section{category FAXF FiniteAlgebraicExtensionField}

<<category FAXF FiniteAlgebraicExtensionField>>=
import Boolean
import NonNegativeInteger
import PositiveInteger
import Vector
import Matrix
import SparseUnivariatePolynomial
import OnePointCompletion
import CardinalNumber
)abbrev category FAXF FiniteAlgebraicExtensionField
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 11 March 1991
++ Date Last Updated: 31 March 1991
++ Basic Operations: _+, _*, extensionDegree,
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: field, extension field, algebraic extension, finite extension
++ References:
++  R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
++  Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteAlgebraicExtensionField {\em F} is the category of fields
++  which are finite algebraic extensions of the field {\em F}.
++  If {\em F} is finite then any finite algebraic extension of {\em F} is finite, too.
++  Let {\em K} be a finite algebraic extension of the finite field {\em F}.
++  The exponentiation of elements of {\em K} defines a Z-module structure
++  on the multiplicative group of {\em K}. The additive group of {\em K}
++  becomes a module over the ring of polynomials over {\em F} via the operation
++  \spadfun{linearAssociatedExp}(a:K,f:SparseUnivariatePolynomial F)
++  which is linear over {\em F}, i.e. for elements {\em a} from {\em K},
++  {\em c,d} from {\em F} and {\em f,g} univariate polynomials over {\em F}
++  we have \spadfun{linearAssociatedExp}(a,cf+dg) equals {\em c} times
++  \spadfun{linearAssociatedExp}(a,f) plus {\em d} times
++  \spadfun{linearAssociatedExp}(a,g).
++  Therefore \spadfun{linearAssociatedExp} is defined completely by
++  its action on  monomials from {\em F[X]}:
++  \spadfun{linearAssociatedExp}(a,monomial(1,k)\$SUP(F)) is defined to be
++  \spadfun{Frobenius}(a,k) which is {\em a**(q**k)} where {\em q=size()\$F}.
++  The operations order and discreteLog associated with the multiplicative
++  exponentiation have additive analogues associated to the operation
++  \spadfun{linearAssociatedExp}. These are the functions
++  \spadfun{linearAssociatedOrder} and \spadfun{linearAssociatedLog},
++  respectively.

FiniteAlgebraicExtensionField(F : Field) : Category == _
  Join(ExtensionField F, RetractableTo F) with
  -- should be unified with algebras
  -- Join(ExtensionField F, FramedAlgebra F, RetractableTo F) with
    basis : () -> Vector $
      ++ basis() returns a fixed basis of \$ as \spad{F}-vectorspace.
    basis : PositiveInteger -> Vector $
      ++ basis(n) returns a fixed basis of a subfield of \$ as
      ++ \spad{F}-vectorspace.
    coordinates : $ -> Vector F
      ++ coordinates(a) returns the coordinates of \spad{a} with respect
      ++ to the fixed \spad{F}-vectorspace basis.
    coordinates : Vector $ -> Matrix F
      ++ coordinates([v1,...,vm]) returns the coordinates of the
      ++ vi's with to the fixed basis.  The coordinates of vi are
      ++ contained in the ith row of the matrix returned by this
      ++ function.
    represents:  Vector F -> $
      ++ represents([a1,..,an]) returns \spad{a1*v1 + ... + an*vn}, where
      ++ v1,...,vn are the elements of the fixed basis.
    minimalPolynomial: $ -> SparseUnivariatePolynomial F
      ++ minimalPolynomial(a) returns the minimal polynomial of an
      ++ element \spad{a} over the ground field F.
    definingPolynomial: () -> SparseUnivariatePolynomial F
      ++ definingPolynomial() returns the polynomial used to define
      ++ the field extension.
    extensionDegree : () ->  PositiveInteger
      ++ extensionDegree() returns the degree of field extension.
    degree : $ -> PositiveInteger
      ++ degree(a) returns the degree of the minimal polynomial of an
      ++ element \spad{a} over the ground field F.
    norm: $  -> F
      ++ norm(a) computes the norm of \spad{a} with respect to the
      ++ field considered as an algebra with 1 over the ground field F.
    trace: $ -> F
      ++ trace(a) computes the trace of \spad{a} with respect to
      ++ the field considered as an algebra with 1 over the ground field F.
    if F has Finite then
      FiniteFieldCategory
      minimalPolynomial: ($,PositiveInteger) -> SparseUnivariatePolynomial $
        ++ minimalPolynomial(x,n) computes the minimal polynomial of x over
        ++ the field of extension degree n over the ground field F.
      norm: ($,PositiveInteger)  -> $
        ++ norm(a,d) computes the norm of \spad{a} with respect to the field of
        ++ extension degree d over the ground field of size.
        ++ Error: if d does not divide the extension degree of \spad{a}.
        ++ Note: norm(a,d) = reduce(*,[a**(q**(d*i)) for i in 0..n/d])
      trace: ($,PositiveInteger)   -> $
        ++ trace(a,d) computes the trace of \spad{a} with respect to the
        ++ field of extension degree d over the ground field of size q.
        ++ Error: if d does not divide the extension degree of \spad{a}.
        ++ Note: \spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.
      createNormalElement: () -> $
        ++ createNormalElement() computes a normal element over the ground
        ++ field F, that is,
        ++ \spad{a**(q**i), 0 <= i < extensionDegree()} is an F-basis,
        ++ where \spad{q = size()\$F}.
        ++ Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.
      normalElement: () -> $
        ++ normalElement() returns a element, normal over the ground field F,
        ++ i.e. \spad{a**(q**i), 0 <= i < extensionDegree()} is an F-basis,
        ++ where \spad{q = size()\$F}.
        ++ At the first call, the element is computed by
        ++ \spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField}
        ++ then cached in a global variable.
        ++ On subsequent calls, the element is retrieved by referencing the
        ++ global variable.
      normal?: $ -> Boolean
        ++ normal?(a) tests whether the element \spad{a} is normal over the
        ++ ground field F, i.e.
        ++ \spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an F-basis,
        ++ where \spad{q = size()\$F}.
        ++ Implementation according to Lidl/Niederreiter: Theorem 2.39.
      generator: () -> $
        ++ generator() returns a root of the defining polynomial.
        ++ This element generates the field as an algebra over the ground field.
      linearAssociatedExp:($,SparseUnivariatePolynomial F) -> $
        ++ linearAssociatedExp(a,f) is linear over {\em F}, i.e.
        ++ for elements {\em a} from {\em \$}, {\em c,d} form {\em F} and
        ++ {\em f,g} univariate polynomials over {\em F} we have
        ++ \spadfun{linearAssociatedExp}(a,cf+dg) equals {\em c} times
        ++ \spadfun{linearAssociatedExp}(a,f) plus {\em d} times
        ++ \spadfun{linearAssociatedExp}(a,g). Therefore
        ++ \spadfun{linearAssociatedExp} is defined completely by its action on
        ++ monomials from {\em F[X]}:
        ++ \spadfun{linearAssociatedExp}(a,monomial(1,k)\$SUP(F)) is defined to
        ++ be \spadfun{Frobenius}(a,k) which is {\em a**(q**k)},
        ++ where {\em q=size()\$F}.
      linearAssociatedOrder: $ -> SparseUnivariatePolynomial F
        ++ linearAssociatedOrder(a) retruns the monic polynomial {\em g} of
        ++ least degree, such that \spadfun{linearAssociatedExp}(a,g) is 0.
      linearAssociatedLog: $ -> SparseUnivariatePolynomial F
        ++ linearAssociatedLog(a) returns a polynomial {\em g}, such that
        ++ \spadfun{linearAssociatedExp}(normalElement(),g) equals {\em a}.
      linearAssociatedLog: ($,$) -> Union(SparseUnivariatePolynomial F,"failed")
        ++ linearAssociatedLog(b,a) returns a polynomial {\em g}, such that the
        ++ \spadfun{linearAssociatedExp}(b,g) equals {\em a}.
        ++ If there is no such polynomial {\em g}, then
        ++ \spadfun{linearAssociatedLog} fails.
  add
    I   ==> Integer
    PI  ==> PositiveInteger
    NNI ==> NonNegativeInteger
    SUP ==> SparseUnivariatePolynomial
    DLP ==> DiscreteLogarithmPackage

    represents(v) ==
      a:$:=0
      b:=basis()
      for i in 1..extensionDegree()@PI repeat
        a:=a+(v.i)*(b.i)
      a
    transcendenceDegree() == 0$NNI
    dimension() == (#basis()) ::NonNegativeInteger::CardinalNumber
    extensionDegree():OnePointCompletion(PositiveInteger) ==
      (#basis()) :: PositiveInteger::OnePointCompletion(PositiveInteger)
    degree(a):OnePointCompletion(PositiveInteger) ==
      degree(a)@PI::OnePointCompletion(PositiveInteger)

    coordinates(v:Vector $) ==
      m := new(#v, extensionDegree(), 0)$Matrix(F)
      for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
        setRow_!(m, j, coordinates qelt(v, i))
      m
    algebraic? a == true
    transcendent? a == false
    extensionDegree(): PositiveInteger == (#basis()) :: PositiveInteger
    -- degree a == degree(minimalPolynomial a)$SUP(F) :: PI
    trace a ==
      b := basis()
      abs : F := 0
      for i in 1..#b repeat
        abs := abs + coordinates(a*b.i).i
      abs
    norm a ==
      b := basis()
      m := new(#b,#b, 0)$Matrix(F)
      for i in 1..#b repeat
        setRow_!(m,i, coordinates(a*b.i))
      determinant(m)
    if F has Finite then
      linearAssociatedExp(x,f) ==
        erg:$:=0
        y:=x
        for i in 0..degree(f) repeat
          erg:=erg + coefficient(f,i) * y
          y:=Frobenius(y)
        erg
      linearAssociatedLog(b,x) ==
        x=0 => 0
        l:List List F:=[entries coordinates b]
        a:$:=b
        extdeg:NNI:=extensionDegree()@PI
        for i in 2..extdeg repeat
          a:=Frobenius(a)
          l:=concat(l,entries coordinates a)$(List List F)
        l:=concat(l,entries coordinates x)$(List List F)
        m1:=rowEchelon transpose matrix(l)$(Matrix F)
        v:=zero(extdeg)$(Vector F)
        rown:I:=1
        for i in 1..extdeg repeat
          if qelt(m1,rown,i) = 1$F then
            v.i:=qelt(m1,rown,extdeg+1)
            rown:=rown+1
        p:=+/[monomial(v.(i+1),i::NNI) for i in 0..(#v-1)]
        p=0 =>
         messagePrint("linearAssociatedLog: second argument not in_
                       group generated by first argument")$OutputForm
         "failed"
        p
      linearAssociatedLog(x) == linearAssociatedLog(normalElement(),x) ::
                              SparseUnivariatePolynomial(F)
      linearAssociatedOrder(x) ==
        x=0 => 0
        l:List List F:=[entries coordinates x]
        a:$:=x
        for i in 1..extensionDegree()@PI repeat
          a:=Frobenius(a)
          l:=concat(l,entries coordinates a)$(List List F)
        v:=first nullSpace transpose matrix(l)$(Matrix F)
        +/[monomial(v.(i+1),i::NNI) for i in 0..(#v-1)]

      charthRoot(x):Union($,"failed") ==
        (charthRoot(x)@$)::Union($,"failed")
      -- norm(e) == norm(e,1) pretend F
      -- trace(e) == trace(e,1) pretend F
      minimalPolynomial(a,n) ==
        extensionDegree()@PI rem n ~= 0 =>
          error "minimalPolynomial: 2. argument must divide extension degree"
        f:SUP $:=monomial(1,1)$(SUP $) - monomial(a,0)$(SUP $)
        u:$:=Frobenius(a,n)
        while not(u = a) repeat
          f:=f * (monomial(1,1)$(SUP $) - monomial(u,0)$(SUP $))
          u:=Frobenius(u,n)
        f
      norm(e,s) ==
        qr := divide(extensionDegree(), s)
        zero?(qr.remainder) =>
          pow := (size()-1) quo (size()$F ** s - 1)
          e ** (pow::NonNegativeInteger)
        error "norm: second argument must divide degree of extension"
      trace(e,s) ==
        qr:=divide(extensionDegree(),s)
        q:=size()$F
        zero?(qr.remainder) =>
          a:$:=0
          for i in 0..qr.quotient-1 repeat
            a:=a + e**(q**(s*i))
          a
        error "trace: second argument must divide degree of extension"
      size() == size()$F ** extensionDegree()
      createNormalElement() ==
        characteristic$% = size() => 1
        res : $
        for i in 1.. repeat
          res := index(i :: PI)
          not inGroundField? res =>
            normal? res => return res
        -- theorem: there exists a normal element, this theorem is
        -- unknown to the compiler
        res
      normal?(x:$) ==
        p:SUP $:=(monomial(1,extensionDegree()) - monomial(1,0))@(SUP $)
        f:SUP $:= +/[monomial(Frobenius(x,i),i)$(SUP $) _
                   for i in 0..extensionDegree()-1]
        gcd(p,f) = 1 => true
        false
      degree(a: %): PositiveInteger ==
        y:$:=Frobenius a
        deg:PI:=1
        while y~=a repeat
          y := Frobenius(y)
          deg:=deg+1
        deg

@
\section{package DLP DiscreteLogarithmPackage}
<<package DLP DiscreteLogarithmPackage>>=
)abbrev package DLP DiscreteLogarithmPackage
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 12 March 1991
++ Date Last Updated: 31 March 1991
++ Basic Operations:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: discrete logarithm
++ References:
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  DiscreteLogarithmPackage implements help functions for discrete logarithms
++  in monoids using small cyclic groups.

DiscreteLogarithmPackage(M): public == private where
  M : Join(Monoid,Finite) with
   **: (M,Integer) -> M
	++ x ** n returns x raised to the integer power n
  public ==> with
    shanksDiscLogAlgorithm:(M,M,NonNegativeInteger)->  _
        Union(NonNegativeInteger,"failed")
      ++ shanksDiscLogAlgorithm(b,a,p) computes s with \spad{b**s = a} for
      ++ assuming that \spad{a} and b are elements in a 'small' cyclic group of
      ++ order p by Shank's algorithm.
      ++ Note: this is a subroutine of the function \spadfun{discreteLog}.
  I   ==> Integer
  PI  ==> PositiveInteger
  NNI ==> NonNegativeInteger
  SUP ==> SparseUnivariatePolynomial
  DLP ==> DiscreteLogarithmPackage

  private ==> add
    shanksDiscLogAlgorithm(logbase,c,p) ==
      limit:Integer:= 30
      -- for logarithms up to cyclic groups of order limit a full
      -- logarithm table is computed
      p < limit =>
        a:M:=1
        disclog:Integer:=0
        found:Boolean:=false
        for i in 0..p-1 while not found repeat
          a = c =>
            disclog:=i
            found:=true
          a:=a*logbase
        not found =>
          messagePrint("discreteLog: second argument not in cyclic group_
 generated by first argument")$OutputForm
          "failed"
        disclog pretend NonNegativeInteger
      l:Integer:=length(p)$Integer
      if odd?(l)$Integer then n:Integer:= shift(p,-(l quo 2))
                         else n:Integer:= shift(1,(l quo 2))
      a:M:=1
      exptable : Table(PI,NNI) :=table()$Table(PI,NNI)
      for i in (0::NNI)..(n-1)::NNI repeat
        insert_!([lookup(a),i::NNI]$Record(key:PI,entry:NNI),_
                  exptable)$Table(PI,NNI)
        a:=a*logbase
      found := false
      end := (p-1) quo n
      disclog:Integer:=0
      a := c
      b := logbase ** (-n)
      for i in 0..end while not found repeat
        rho:= search(lookup(a),exptable)_
              $Table(PositiveInteger,NNI)
        rho case NNI =>
          found := true
          disclog:= n * i + rho pretend Integer
        a := a * b
      not found =>
        messagePrint("discreteLog: second argument not in cyclic group_
 generated by first argument")$OutputForm
        "failed"
      disclog pretend NonNegativeInteger

@

\section{category FFIELDC FiniteFieldCategory}

<<category FFIELDC FiniteFieldCategory>>=
import Boolean
import Integer
import NonNegativeInteger
import PositiveInteger
import Matrix
import List
import Table
import OnePointCompletion
import SparseUnivariatePolynomial
)abbrev category FFIELDC FiniteFieldCategory
++ Author: J. Grabmeier, A. Scheerhorn
++ Date Created: 11 March 1991
++ Date Last Updated: 31 March 1991
++ Basic Operations: _+, _*, extensionDegree, order, primitiveElement
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: field, extension field, algebraic extension, finite field
++  Galois field
++ References:
++  D.Lipson, Elements of Algebra and Algebraic Computing, The
++  Benjamin/Cummings Publishing Company, Inc.-Menlo Park, California, 1981.
++  J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
++  AXIOM Technical Report Series, ATR/5 NP2522.
++ Description:
++  FiniteFieldCategory is the category of finite fields

FiniteFieldCategory() : Category ==_
  Join(FieldOfPrimeCharacteristic,Finite,StepThrough,DifferentialRing) with
--                 ,PolynomialFactorizationExplicit) with
    charthRoot: $ -> $
      ++ charthRoot(a) takes the characteristic'th root of {\em a}.
      ++ Note: such a root is alway defined in finite fields.
    conditionP: Matrix $ -> Union(Vector $,"failed")
      ++ conditionP(mat), given a matrix representing a homogeneous system
      ++ of equations, returns a vector whose characteristic'th powers
      ++ is a non-trivial solution, or "failed" if no such vector exists.
    -- the reason for implementing the following function is that we
    -- can implement the functions order, getGenerator and primitive? on
    -- category level without computing the, may be time intensive,
    -- factorization of size()-1 at every function call again.
    factorsOfCyclicGroupSize:_
      () -> List Record(factor:Integer,exponent:Integer)
      ++ factorsOfCyclicGroupSize() returns the factorization of size()-1
    -- the reason for implementing the function tableForDiscreteLogarithm
    -- is that we can implement the functions discreteLog and
    -- shanksDiscLogAlgorithm on category level
    -- computing the necessary exponentiation tables in the respective
    -- domains once and for all
    -- absoluteDegree : $ -> PositiveInteger
    --  ++ degree of minimal polynomial, if algebraic with respect
    --  ++ to the prime subfield
    tableForDiscreteLogarithm: Integer -> _
             Table(PositiveInteger,NonNegativeInteger)
      ++ tableForDiscreteLogarithm(a,n) returns a table of the discrete
      ++ logarithms of \spad{a**0} up to \spad{a**(n-1)} which, called with
      ++ key \spad{lookup(a**i)} returns i for i in \spad{0..n-1}.
      ++ Error: if not called for prime divisors of order of
      ++        multiplicative group.
    createPrimitiveElement: () -> $
      ++ createPrimitiveElement() computes a generator of the (cyclic)
      ++ multiplicative group of the field.
      -- RDJ: Are these next lines to be included?
      -- we run through the field and test, algorithms which construct
      -- elements of larger order were found to be too slow
    primitiveElement: () -> $
      ++ primitiveElement() returns a primitive element stored in a global
      ++ variable in the domain.
      ++ At first call, the primitive element is computed
      ++ by calling \spadfun{createPrimitiveElement}.
    primitive?: $ -> Boolean
      ++ primitive?(b) tests whether the element b is a generator of the
      ++ (cyclic) multiplicative group of the field, i.e. is a primitive
      ++ element.
      ++ Implementation Note: see ch.IX.1.3, th.2 in D. Lipson.
    discreteLog: $ -> NonNegativeInteger
      ++ discreteLog(a) computes the discrete logarithm of \spad{a}
      ++ with respect to \spad{primitiveElement()} of the field.
    order: $ -> PositiveInteger
      ++ order(b) computes the order of an element b in the multiplicative
      ++ group of the field.
      ++ Error: if b equals 0.
    representationType: () -> Union("prime","polynomial","normal","cyclic")
      ++ representationType() returns the type of the representation, one of:
      ++ \spad{prime}, \spad{polynomial}, \spad{normal}, or \spad{cyclic}.
  add
    I   ==> Integer
    PI  ==> PositiveInteger
    NNI ==> NonNegativeInteger
    SUP ==> SparseUnivariatePolynomial
    DLP ==> DiscreteLogarithmPackage

    -- exported functions

    differentiate x          == 0
    init() == 0
    nextItem(a) ==
      zero?(a:=index(lookup(a)+1)) => "failed"
      a
    order(e):OnePointCompletion(PositiveInteger) ==
      (order(e)@PI)::OnePointCompletion(PositiveInteger)

    conditionP(mat:Matrix $) ==
      l:=nullSpace mat
      empty? l or every?(zero?, first l) => "failed"
      map(charthRoot,first l)
    charthRoot(x:$):$ == x**(size()$% quo characteristic$%)
    charthRoot(x:%):Union($,"failed") ==
        (charthRoot(x)@$)::Union($,"failed")
    createPrimitiveElement() ==
      sm1  : PositiveInteger := (size()$%-1) pretend PositiveInteger
      start : Integer :=
        -- in the polynomial case, index from 1 to characteristic-1
        -- gives prime field elements
        representationType = "polynomial" => characteristic$%
        1
      found : Boolean := false
      e : $
      for i in start..  while not found repeat
        e := index(i::PositiveInteger)
        found := (order(e) = sm1)
      e
    primitive? a ==
      -- add special implementation for prime field case
      zero?(a) => false
      explist := factorsOfCyclicGroupSize()
      q:=(size()$%-1)@Integer
      equalone : Boolean := false
      for exp in explist while not equalone repeat
        equalone := one?(a**(q quo exp.factor))
      not equalone
    order(e: %): PositiveInteger ==
      e = 0 => error "order(0) is not defined "
      ord:Integer:= size()$%-1 -- order e divides ord
      lof:=factorsOfCyclicGroupSize()
      for rec in lof repeat -- run through prime divisors
        a := ord quo (primeDivisor := rec.factor)
        goon := one?(e**a)
        -- run through exponents of the prime divisors
        for j in 0..(rec.exponent)-2 while goon repeat
          -- as long as we get (e**ord = 1) we
          -- continue dividing by primeDivisor
          ord := a
          a := ord quo primeDivisor
          goon := one?(e**a)
        if goon then ord := a
        -- as we do a top down search we have found the
        -- correct exponent of primeDivisor in order e
        -- and continue with next prime divisor
      ord pretend PositiveInteger
    discreteLog(b) ==
      zero?(b) => error "discreteLog: logarithm of zero"
      faclist:=factorsOfCyclicGroupSize()
      a:=b
      gen:=primitiveElement()
      -- in GF(2) its necessary to have discreteLog(1) = 1
      b = gen => 1
      disclog:Integer:=0
      mult:Integer:=1
      groupord := (size()$% - 1)@Integer
      exp:Integer:=groupord
      for f in faclist repeat
        fac:=f.factor
        for t in 0..f.exponent-1 repeat
          exp:=exp quo fac
          -- shanks discrete logarithm algorithm
          exptable:=tableForDiscreteLogarithm(fac)
          n:=#exptable
          c:=a**exp
          end:=(fac - 1) quo n
          found:=false
          disc1:Integer:=0
          for i in 0..end while not found repeat
            rho:= search(lookup(c),exptable)_
                  $Table(PositiveInteger,NNI)
            rho case NNI =>
              found := true
              disc1:=((n * i + rho)@Integer) * mult
            c:=c* gen**((groupord quo fac) * (-n))
          not found => error "discreteLog: ?? discrete logarithm"
          -- end of shanks discrete logarithm algorithm
          mult := mult * fac
          disclog:=disclog+disc1
          a:=a * (gen ** (-disc1))
      disclog pretend NonNegativeInteger

    discreteLog(logbase,b) ==
      zero?(b) =>
        messagePrint("discreteLog: logarithm of zero")$OutputForm
        "failed"
      zero?(logbase) =>
        messagePrint("discreteLog: logarithm to base zero")$OutputForm
        "failed"
      b = logbase => 1
      not zero?((groupord:=order(logbase)@PI) rem order(b)@PI) =>
         messagePrint("discreteLog: second argument not in cyclic group _
generated by first argument")$OutputForm
         "failed"
      faclist:=factors factor groupord
      a:=b
      disclog:Integer:=0
      mult:Integer:=1
      exp:Integer:= groupord
      for f in faclist repeat
        fac:=f.factor
        primroot:= logbase ** (groupord quo fac)
        for t in 0..f.exponent-1 repeat
          exp:=exp quo fac
          rhoHelp:= shanksDiscLogAlgorithm(primroot,_
                a**exp,fac pretend NonNegativeInteger)$DLP($)
          rhoHelp case "failed" => return "failed"
          rho := (rhoHelp :: NNI) * mult
          disclog := disclog + rho
          mult := mult * fac
          a:=a * (logbase ** (-rho))
      disclog pretend NonNegativeInteger

    FP ==> SparseUnivariatePolynomial($)
    FRP ==> Factored FP
    f,g:FP
    squareFreePolynomial(f:FP):FRP ==
          squareFree(f)$UnivariatePolynomialSquareFree($,FP)
    factorPolynomial(f:FP):FRP == factor(f)$DistinctDegreeFactorize($,FP)
    factorSquareFreePolynomial(f:FP):FRP ==
        f = 0 => 0
        flist := distdfact(f,true)$DistinctDegreeFactorize($,FP)
        (flist.cont :: FP) *
            (*/[primeFactor(u.irr,u.pow) for u in flist.factors])
    gcdPolynomial(f:FP,g:FP):FP ==
         gcd(f,g)$EuclideanDomain_&(FP)

@

\section{package FFSLPE FiniteFieldSolveLinearPolynomialEquation}
<<package FFSLPE FiniteFieldSolveLinearPolynomialEquation>>=
)abbrev package FFSLPE FiniteFieldSolveLinearPolynomialEquation
++ Author: Davenport
++ Date Created: 1991
++ Date Last Updated:
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ This package solves linear diophantine equations for Bivariate polynomials
++ over finite fields

FiniteFieldSolveLinearPolynomialEquation(F:FiniteFieldCategory,
                                        FP:UnivariatePolynomialCategory F,
                                        FPP:UnivariatePolynomialCategory FP): with
   solveLinearPolynomialEquation: (List FPP, FPP) -> Union(List FPP,"failed")
              ++ solveLinearPolynomialEquation([f1, ..., fn], g)
              ++ (where the fi are relatively prime to each other)
              ++ returns a list of ai such that
              ++ \spad{g/prod fi = sum ai/fi}
              ++ or returns "failed" if no such list of ai's exists.
  == add
     oldlp:List FPP := []
     slpePrime: FP := monomial(1,1)
     oldtable:Vector List FPP := []
     lp: List FPP
     p: FPP
     import DistinctDegreeFactorize(F,FP)
     solveLinearPolynomialEquation(lp,p) ==
       if (oldlp ~= lp) then
          -- we have to generate a new table
          deg:= +/[degree u for u in lp]
          ans:Union(Vector List FPP,"failed"):="failed"
          slpePrime:=monomial(1,1)+monomial(1,0)   -- x+1: our starting guess
          while (ans case "failed") repeat
            ans:=tablePow(deg,slpePrime,lp)$GenExEuclid(FP,FPP)
            if (ans case "failed") then
               slpePrime:= nextItem(slpePrime)::FP
               while (degree slpePrime > 1) and
                     not irreducible? slpePrime repeat
                 slpePrime := nextItem(slpePrime)::FP
          oldtable:=(ans:: Vector List FPP)
       answer:=solveid(p,slpePrime,oldtable)
       answer

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package DLP DiscreteLogarithmPackage>>
<<category FPC FieldOfPrimeCharacteristic>>
<<category XF ExtensionField>>
<<category FAXF FiniteAlgebraicExtensionField>>
<<category FFIELDC FiniteFieldCategory>>
<<package FFSLPE FiniteFieldSolveLinearPolynomialEquation>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}