1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra expr.spad}
\author{Manuel Bronstein, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain EXPR Expression}
<<domain EXPR Expression>>=
)abbrev domain EXPR Expression
++ Top-level mathematical expressions
++ Author: Manuel Bronstein
++ Date Created: 19 July 1988
++ Date Last Updated: October 1993 (P.Gianni), February 1995 (MB)
++ Description: Expressions involving symbolic functions.
++ Keywords: operator, kernel, function.
Expression(R: SetCategory): Exports == Implementation where
Q ==> Fraction Integer
K ==> Kernel %
MP ==> SparseMultivariatePolynomial(R, K)
AF ==> AlgebraicFunction(R, %)
EF ==> ElementaryFunction(R, %)
CF ==> CombinatorialFunction(R, %)
LF ==> LiouvillianFunction(R, %)
AN ==> AlgebraicNumber
KAN ==> Kernel AN
FSF ==> FunctionalSpecialFunction(R, %)
ESD ==> ExpressionSpace_&(%)
FSD ==> FunctionSpace_&(%, R)
SUP ==> SparseUnivariatePolynomial
Exports ==> FunctionSpace R with
if R has IntegralDomain then
AlgebraicallyClosedFunctionSpace R
TranscendentalFunctionCategory
CombinatorialOpsCategory
LiouvillianFunctionCategory
SpecialFunctionCategory
reduce: % -> %
++ reduce(f) simplifies all the unreduced algebraic quantities
++ present in f by applying their defining relations.
number?: % -> Boolean
++ number?(f) tests if f is rational
simplifyPower: (%,Integer) -> %
++ simplifyPower?(f,n) \undocumented{}
if R has GcdDomain then
factorPolynomial : SUP % -> Factored SUP %
++ factorPolynomial(p) \undocumented{}
squareFreePolynomial : SUP % -> Factored SUP %
++ squareFreePolynomial(p) \undocumented{}
if R has RetractableTo Integer then RetractableTo AN
Implementation ==> add
macro SYMBOL == '%symbol
macro ALGOP == '%alg
macro POWER == '%power
import KernelFunctions2(R, %)
retNotUnit : % -> R
retNotUnitIfCan: % -> Union(R, "failed")
belong? op == true
retNotUnit x ==
R has OrderedSet and
(u := constantIfCan(k := retract(x)@K)) case R => u::R
error "Not retractable"
retNotUnitIfCan x ==
(r := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed"
constantIfCan(r::K)
if R has IntegralDomain then
reduc : (%, List Kernel %) -> %
commonk : (%, %) -> List K
commonk0 : (List K, List K) -> List K
toprat : % -> %
algkernels: List K -> List K
evl : (MP, K, SparseUnivariatePolynomial %) -> Fraction MP
evl0 : (MP, K) -> SparseUnivariatePolynomial Fraction MP
Rep := Fraction MP
0 == 0$Rep
1 == 1$Rep
one? x == one?(x)$Rep
zero? x == zero?(x)$Rep
- x:% == -$Rep x
n:Integer * x:% == n *$Rep x
coerce(n:Integer) == coerce(n)$Rep@Rep::%
x:% * y:% == reduc(x *$Rep y, commonk(x, y))
x:% + y:% == reduc(x +$Rep y, commonk(x, y))
(x:% - y:%):% == reduc(x -$Rep y, commonk(x, y))
x:% / y:% == reduc(x /$Rep y, commonk(x, y))
number?(x:%):Boolean ==
if R has RetractableTo(Integer) then
ground?(x) or ((retractIfCan(x)@Union(Q,"failed")) case Q)
else
ground?(x)
simplifyPower(x:%,n:Integer):% ==
k : List K := kernels x
is?(x,POWER) =>
-- Look for a power of a number in case we can do a simplification
args : List % := argument first k
not(#args = 2) => error "Too many arguments to **"
number?(args.1) =>
reduc((args.1) **$Rep n, algkernels kernels (args.1))**(args.2)
(first args)**(n*second(args))
reduc(x **$Rep n, algkernels k)
x:% ** n:NonNegativeInteger ==
n = 0 => 1$%
n = 1 => x
simplifyPower(numerator x,n pretend Integer) / simplifyPower(denominator x,n pretend Integer)
x:% ** n:Integer ==
n = 0 => 1$%
n = 1 => x
n = -1 => 1/x
simplifyPower(numerator x,n) / simplifyPower(denominator x,n)
x:% ** n:PositiveInteger ==
n = 1 => x
simplifyPower(numerator x,n pretend Integer) / simplifyPower(denominator x,n pretend Integer)
before?(x:%,y:%) == before?(x,y)$Rep
x:% = y:% == x =$Rep y
numer x == numer(x)$Rep
denom x == denom(x)$Rep
coerce(p:MP):% == coerce(p)$Rep
reduce x == reduc(x, algkernels kernels x)
commonk(x, y) == commonk0(algkernels kernels x, algkernels kernels y)
algkernels l == select!(has?(operator #1, ALGOP), l)
toprat f == ratDenom(f, algkernels kernels f)$AlgebraicManipulations(R, %)
x:MP / y:MP ==
reduc(x /$Rep y,commonk0(algkernels variables x,algkernels variables y))
-- since we use the reduction from FRAC SMP which asssumes that the
-- variables are independent, we must remove algebraic from the denominators
reducedSystem(m:Matrix %):Matrix(R) ==
mm:Matrix(MP) := reducedSystem(map(toprat, m))$Rep
reducedSystem(mm)$MP
-- since we use the reduction from FRAC SMP which asssumes that the
-- variables are independent, we must remove algebraic from the denominators
reducedSystem(m:Matrix %, v:Vector %):
Record(mat:Matrix R, vec:Vector R) ==
r:Record(mat:Matrix MP, vec:Vector MP) :=
reducedSystem(map(toprat, m), map(toprat, v))$Rep
reducedSystem(r.mat, r.vec)$MP
-- The result MUST be left sorted deepest first MB 3/90
commonk0(x, y) ==
ans := empty()$List(K)
for k in reverse! x repeat if member?(k, y) then ans := concat(k, ans)
ans
rootOf(x:SparseUnivariatePolynomial %, v:Symbol) == rootOf(x,v)$AF
pi() == pi()$EF
exp x == exp(x)$EF
log x == log(x)$EF
sin x == sin(x)$EF
cos x == cos(x)$EF
tan x == tan(x)$EF
cot x == cot(x)$EF
sec x == sec(x)$EF
csc x == csc(x)$EF
asin x == asin(x)$EF
acos x == acos(x)$EF
atan x == atan(x)$EF
acot x == acot(x)$EF
asec x == asec(x)$EF
acsc x == acsc(x)$EF
sinh x == sinh(x)$EF
cosh x == cosh(x)$EF
tanh x == tanh(x)$EF
coth x == coth(x)$EF
sech x == sech(x)$EF
csch x == csch(x)$EF
asinh x == asinh(x)$EF
acosh x == acosh(x)$EF
atanh x == atanh(x)$EF
acoth x == acoth(x)$EF
asech x == asech(x)$EF
acsch x == acsch(x)$EF
abs x == abs(x)$FSF
Gamma x == Gamma(x)$FSF
Gamma(a, x) == Gamma(a, x)$FSF
Beta(x,y) == Beta(x,y)$FSF
digamma x == digamma(x)$FSF
polygamma(k,x) == polygamma(k,x)$FSF
besselJ(v,x) == besselJ(v,x)$FSF
besselY(v,x) == besselY(v,x)$FSF
besselI(v,x) == besselI(v,x)$FSF
besselK(v,x) == besselK(v,x)$FSF
airyAi x == airyAi(x)$FSF
airyBi x == airyBi(x)$FSF
x:% ** y:% == x **$CF y
factorial x == factorial(x)$CF
binomial(n, m) == binomial(n, m)$CF
permutation(n, m) == permutation(n, m)$CF
factorials x == factorials(x)$CF
factorials(x, n) == factorials(x, n)$CF
summation(x:%, n:Symbol) == summation(x, n)$CF
summation(x:%, s:SegmentBinding %) == summation(x, s)$CF
product(x:%, n:Symbol) == product(x, n)$CF
product(x:%, s:SegmentBinding %) == product(x, s)$CF
erf x == erf(x)$LF
Ei x == Ei(x)$LF
Si x == Si(x)$LF
Ci x == Ci(x)$LF
li x == li(x)$LF
dilog x == dilog(x)$LF
integral(x:%, n:Symbol) == integral(x, n)$LF
integral(x:%, s:SegmentBinding %) == integral(x, s)$LF
operator op ==
belong?(op)$AF => operator(op)$AF
belong?(op)$EF => operator(op)$EF
belong?(op)$CF => operator(op)$CF
belong?(op)$LF => operator(op)$LF
belong?(op)$FSF => operator(op)$FSF
belong?(op)$FSD => operator(op)$FSD
belong?(op)$ESD => operator(op)$ESD
nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
operator(name op, arity op)
reduc(x, l) ==
for k in l repeat
p := minPoly k
x := evl(numer x, k, p) /$Rep evl(denom x, k, p)
x
evl0(p, k) ==
numer univariate(p::Fraction(MP),
k)$PolynomialCategoryQuotientFunctions(IndexedExponents K,
K,R,MP,Fraction MP)
-- uses some operations from Rep instead of % in order not to
-- reduce recursively during those operations.
evl(p, k, m) ==
degree(p, k) < degree m => p::Fraction(MP)
(((evl0(p, k) pretend SparseUnivariatePolynomial($)) rem m)
pretend SparseUnivariatePolynomial Fraction MP) (k::MP::Fraction(MP))
if R has GcdDomain then
noalg?: SUP % -> Boolean
noalg? p ==
while p ~= 0 repeat
not empty? algkernels kernels leadingCoefficient p => return false
p := reductum p
true
gcdPolynomial(p:SUP %, q:SUP %) ==
noalg? p and noalg? q => gcdPolynomial(p, q)$Rep
gcdPolynomial(p, q)$GcdDomain_&(%)
factorPolynomial(x:SUP %) : Factored SUP % ==
uf:= factor(x pretend SUP(Rep))$SupFractionFactorizer(
IndexedExponents K,K,R,MP)
uf pretend Factored SUP %
squareFreePolynomial(x:SUP %) : Factored SUP % ==
uf:= squareFree(x pretend SUP(Rep))$SupFractionFactorizer(
IndexedExponents K,K,R,MP)
uf pretend Factored SUP %
if R is AN then
-- this is to force the coercion R -> EXPR R to be used
-- instead of the coercioon AN -> EXPR R which loops.
-- simpler looking code will fail! MB 10/91
coerce(x:AN):% == (monomial(x, 0$IndexedExponents(K))$MP)::%
if (R has RetractableTo Integer) then
x:% ** r:Q == x **$AF r
minPoly k == minPoly(k)$AF
definingPolynomial x == definingPolynomial(x)$AF
retract(x:%):Q == retract(x)$Rep
retractIfCan(x:%):Union(Q, "failed") == retractIfCan(x)$Rep
if not(R is AN) then
k2expr : KAN -> %
smp2expr: SparseMultivariatePolynomial(Integer, KAN) -> %
R2AN : R -> Union(AN, "failed")
k2an : K -> Union(AN, "failed")
smp2an : MP -> Union(AN, "failed")
coerce(x:AN):% == smp2expr(numer x) / smp2expr(denom x)
k2expr k == map(#1::%, k)$ExpressionSpaceFunctions2(AN, %)
smp2expr p ==
map(k2expr,#1::%,p)$PolynomialCategoryLifting(IndexedExponents KAN,
KAN, Integer, SparseMultivariatePolynomial(Integer, KAN), %)
retractIfCan(x:%):Union(AN, "failed") ==
((n:= smp2an numer x) case AN) and ((d:= smp2an denom x) case AN)
=> (n::AN) / (d::AN)
"failed"
R2AN r ==
(u := retractIfCan(r::%)@Union(Q, "failed")) case Q => u::Q::AN
"failed"
k2an k ==
not(belong?(op := operator k)$AN) => "failed"
arg:List(AN) := empty()
for x in argument k repeat
if (a := retractIfCan(x)@Union(AN, "failed")) case "failed" then
return "failed"
else arg := concat(a::AN, arg)
(operator(op)$AN) reverse!(arg)
smp2an p ==
(x1 := mainVariable p) case "failed" => R2AN leadingCoefficient p
up := univariate(p, k := x1::K)
(t := k2an k) case "failed" => "failed"
ans:AN := 0
while not ground? up repeat
(c:=smp2an leadingCoefficient up) case "failed" => return "failed"
ans := ans + (c::AN) * (t::AN) ** (degree up)
up := reductum up
(c := smp2an leadingCoefficient up) case "failed" => "failed"
ans + c::AN
if R has ConvertibleTo InputForm then
convert(x:%):InputForm == convert(x)$Rep
import MakeUnaryCompiledFunction(%, %, %)
eval(f:%, op: BasicOperator, g:%, x:Symbol):% ==
eval(f,[op],[g],x)
eval(f:%, ls:List BasicOperator, lg:List %, x:Symbol) ==
-- handle subsrcipted symbols by renaming -> eval -> renaming back
llsym:List List Symbol:=[variables g for g in lg]
lsym:List Symbol:= removeDuplicates concat llsym
lsd:List Symbol:=select (scripted?,lsym)
empty? lsd=> eval(f,ls,[compiledFunction(g, x) for g in lg])
ns:List Symbol:=[new()$Symbol for i in lsd]
lforwardSubs:List Equation % := [(i::%)= (j::%) for i in lsd for j in ns]
lbackwardSubs:List Equation % := [(j::%)= (i::%) for i in lsd for j in ns]
nlg:List % :=[subst(g,lforwardSubs) for g in lg]
res:% :=eval(f, ls, [compiledFunction(g, x) for g in nlg])
subst(res,lbackwardSubs)
if R has PatternMatchable Integer then
patternMatch(x:%, p:Pattern Integer,
l:PatternMatchResult(Integer, %)) ==
patternMatch(x, p, l)$PatternMatchFunctionSpace(Integer, R, %)
if R has PatternMatchable Float then
patternMatch(x:%, p:Pattern Float,
l:PatternMatchResult(Float, %)) ==
patternMatch(x, p, l)$PatternMatchFunctionSpace(Float, R, %)
else -- R is not an integral domain
operator op ==
belong?(op)$FSD => operator(op)$FSD
belong?(op)$ESD => operator(op)$ESD
nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
operator(name op, arity op)
if R has Ring then
Rep := MP
0 == 0$Rep
1 == 1$Rep
- x:% == -$Rep x
n:Integer *x:% == n *$Rep x
x:% * y:% == x *$Rep y
x:% + y:% == x +$Rep y
x:% = y:% == x =$Rep y
before?(x:%,y:%) == before?(x,y)$Rep
numer x == x@Rep
coerce(p:MP):% == p
reducedSystem(m:Matrix %):Matrix(R) ==
reducedSystem(m)$Rep
reducedSystem(m:Matrix %, v:Vector %):
Record(mat:Matrix R, vec:Vector R) ==
reducedSystem(m, v)$Rep
if R has ConvertibleTo InputForm then
convert(x:%):InputForm == convert(x)$Rep
if R has PatternMatchable Integer then
kintmatch: (K,Pattern Integer,PatternMatchResult(Integer,Rep))
-> PatternMatchResult(Integer, Rep)
kintmatch(k, p, l) ==
patternMatch(k, p, l pretend PatternMatchResult(Integer, %)
)$PatternMatchKernel(Integer, %)
pretend PatternMatchResult(Integer, Rep)
patternMatch(x:%, p:Pattern Integer,
l:PatternMatchResult(Integer, %)) ==
patternMatch(x@Rep, p,
l pretend PatternMatchResult(Integer, Rep),
kintmatch
)$PatternMatchPolynomialCategory(Integer,
IndexedExponents K, K, R, Rep)
pretend PatternMatchResult(Integer, %)
if R has PatternMatchable Float then
kfltmatch: (K, Pattern Float, PatternMatchResult(Float, Rep))
-> PatternMatchResult(Float, Rep)
kfltmatch(k, p, l) ==
patternMatch(k, p, l pretend PatternMatchResult(Float, %)
)$PatternMatchKernel(Float, %)
pretend PatternMatchResult(Float, Rep)
patternMatch(x:%, p:Pattern Float,
l:PatternMatchResult(Float, %)) ==
patternMatch(x@Rep, p,
l pretend PatternMatchResult(Float, Rep),
kfltmatch
)$PatternMatchPolynomialCategory(Float,
IndexedExponents K, K, R, Rep)
pretend PatternMatchResult(Float, %)
else -- R is not even a ring
if R has AbelianMonoid then
import ListToMap(K, %)
kereval : (K, List K, List %) -> %
subeval : (K, List K, List %) -> %
Rep := FreeAbelianGroup K
0 == 0$Rep
x:% + y:% == x +$Rep y
x:% = y:% == x =$Rep y
before?(x:%,y:%) == before?(x,y)$Rep
coerce(k:K):% == coerce(k)$Rep
kernels x == [f.gen for f in terms x]
coerce(x:R):% == (zero? x => 0; constantKernel(x)::%)
retract(x:%):R == (zero? x => 0; retNotUnit x)
coerce(x:%):OutputForm == coerce(x)$Rep
kereval(k, lk, lv) == match(lk, lv, k, map(eval(#1, lk, lv), #1))
subeval(k, lk, lv) ==
match(lk, lv, k,
kernel(operator #1, [subst(a, lk, lv) for a in argument #1]))
isPlus x ==
empty?(l := terms x) or empty? rest l => "failed"
[t.exp *$Rep t.gen for t in l]$List(%)
isMult x ==
empty?(l := terms x) or not empty? rest l => "failed"
t := first l
[t.exp, t.gen]
eval(x:%, lk:List K, lv:List %) ==
_+/[t.exp * kereval(t.gen, lk, lv) for t in terms x]
subst(x:%, lk:List K, lv:List %) ==
_+/[t.exp * subeval(t.gen, lk, lv) for t in terms x]
retractIfCan(x:%):Union(R, "failed") ==
zero? x => 0
retNotUnitIfCan x
if R has AbelianGroup then -(x:%) == -$Rep x
-- else -- R is not an AbelianMonoid
-- if R has SemiGroup then
-- Rep := FreeGroup K
-- 1 == 1$Rep
-- x:% * y:% == x *$Rep y
-- x:% = y:% == x =$Rep y
-- coerce(k:K):% == k::Rep
-- kernels x == [f.gen for f in factors x]
-- coerce(x:R):% == (one? x => 1; constantKernel x)
-- retract(x:%):R == (one? x => 1; retNotUnit x)
-- coerce(x:%):OutputForm == coerce(x)$Rep
-- retractIfCan(x:%):Union(R, "failed") ==
-- one? x => 1
-- retNotUnitIfCan x
-- if R has Group then inv(x:%):% == inv(x)$Rep
else -- R is nothing
import ListToMap(K, %)
Rep := K
before?(x:%,y:%) == before?(x,y)$Rep
x:% = y:% == x =$Rep y
coerce(k:K):% == k
kernels x == [x pretend K]
coerce(x:R):% == constantKernel x
retract(x:%):R == retNotUnit x
retractIfCan(x:%):Union(R, "failed") == retNotUnitIfCan x
coerce(x:%):OutputForm == coerce(x)$Rep
eval(x:%, lk:List K, lv:List %) ==
match(lk, lv, x pretend K, map(eval(#1, lk, lv), #1))
subst(x, lk, lv) ==
match(lk, lv, x pretend K,
kernel(operator #1, [subst(a, lk, lv) for a in argument #1]))
if R has ConvertibleTo InputForm then
convert(x:%):InputForm == convert(x)$Rep
-- if R has PatternMatchable Integer then
-- convert(x:%):Pattern(Integer) == convert(x)$Rep
--
-- patternMatch(x:%, p:Pattern Integer,
-- l:PatternMatchResult(Integer, %)) ==
-- patternMatch(x pretend K,p,l)$PatternMatchKernel(Integer, %)
--
-- if R has PatternMatchable Float then
-- convert(x:%):Pattern(Float) == convert(x)$Rep
--
-- patternMatch(x:%, p:Pattern Float,
-- l:PatternMatchResult(Float, %)) ==
-- patternMatch(x pretend K, p, l)$PatternMatchKernel(Float, %)
@
\section{package PAN2EXPR PolynomialAN2Expression}
<<package PAN2EXPR PolynomialAN2Expression>>=
)abbrev package PAN2EXPR PolynomialAN2Expression
++ Author: Barry Trager
++ Date Created: 8 Oct 1991
++ Description: This package provides a coerce from polynomials over
++ algebraic numbers to \spadtype{Expression AlgebraicNumber}.
PolynomialAN2Expression():Target == Implementation where
EXPR ==> Expression(Integer)
AN ==> AlgebraicNumber
PAN ==> Polynomial AN
SY ==> Symbol
Target ==> with
coerce: Polynomial AlgebraicNumber -> Expression(Integer)
++ coerce(p) converts the polynomial \spad{p} with algebraic number
++ coefficients to \spadtype{Expression Integer}.
coerce: Fraction Polynomial AlgebraicNumber -> Expression(Integer)
++ coerce(rf) converts \spad{rf}, a fraction of polynomial \spad{p} with
++ algebraic number coefficients to \spadtype{Expression Integer}.
Implementation ==> add
coerce(p:PAN):EXPR ==
map(#1::EXPR, #1::EXPR, p)$PolynomialCategoryLifting(
IndexedExponents SY, SY, AN, PAN, EXPR)
coerce(rf:Fraction PAN):EXPR ==
numer(rf)::EXPR / denom(rf)::EXPR
@
\section{package EXPR2 ExpressionFunctions2}
<<package EXPR2 ExpressionFunctions2>>=
)abbrev package EXPR2 ExpressionFunctions2
++ Lifting of maps to Expressions
++ Author: Manuel Bronstein
++ Description: Lifting of maps to Expressions.
++ Date Created: 16 Jan 1989
++ Date Last Updated: 22 Jan 1990
ExpressionFunctions2(R: SetCategory, S: SetCategory):
Exports == Implementation where
K ==> Kernel R
F2 ==> FunctionSpaceFunctions2(R, Expression R, S, Expression S)
E2 ==> ExpressionSpaceFunctions2(Expression R, Expression S)
Exports ==> with
map: (R -> S, Expression R) -> Expression S
++ map(f, e) applies f to all the constants appearing in e.
Implementation == add
if S has Ring and R has Ring then
map(f, r) == map(f, r)$F2
else
map(f, r) == map(map(f, #1), retract r)$E2
@
\section{package PMPREDFS FunctionSpaceAttachPredicates}
<<package PMPREDFS FunctionSpaceAttachPredicates>>=
)abbrev package PMPREDFS FunctionSpaceAttachPredicates
++ Predicates for pattern-matching.
++ Author: Manuel Bronstein
++ Description: Attaching predicates to symbols for pattern matching.
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
FunctionSpaceAttachPredicates(R, F, D): Exports == Implementation where
R: SetCategory
F: FunctionSpace R
D: Type
K ==> Kernel F
Exports ==> with
suchThat: (F, D -> Boolean) -> F
++ suchThat(x, foo) attaches the predicate foo to x;
++ error if x is not a symbol.
suchThat: (F, List(D -> Boolean)) -> F
++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate
++ f1 and f2 and ... and fn to x.
++ Error: if x is not a symbol.
Implementation ==> add
macro PMPRED == '%pmpredicate
import AnyFunctions1(D -> Boolean)
st : (K, List Any) -> F
preds: K -> List Any
mkk : BasicOperator -> F
suchThat(p:F, f:D -> Boolean) == suchThat(p, [f])
mkk op == kernel(op, empty()$List(F))
preds k ==
(u := property(operator k, PMPRED)) case nothing => empty()
(u@None) pretend List(Any)
st(k, l) ==
mkk assert(setProperty(copy operator k, PMPRED,
concat(preds k, l) pretend None), gensym()$Identifier)
suchThat(p:F, l:List(D -> Boolean)) ==
retractIfCan(p)@Union(Symbol, "failed") case Symbol =>
st(retract(p)@K, [f::Any for f in l])
error "suchThat must be applied to symbols only"
@
\section{package PMASSFS FunctionSpaceAssertions}
<<package PMASSFS FunctionSpaceAssertions>>=
)abbrev package PMASSFS FunctionSpaceAssertions
++ Assertions for pattern-matching
++ Author: Manuel Bronstein
++ Description: Attaching assertions to symbols for pattern matching;
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
FunctionSpaceAssertions(R, F): Exports == Implementation where
R: SetCategory
F: FunctionSpace R
K ==> Kernel F
Exports ==> with
assert : (F, Identifier) -> F
++ assert(x, s) makes the assertion s about x.
++ Error: if x is not a symbol.
constant: F -> F
++ constant(x) tells the pattern matcher that x should
++ match only the symbol 'x and no other quantity.
++ Error: if x is not a symbol.
optional: F -> F
++ optional(x) tells the pattern matcher that x can match
++ an identity (0 in a sum, 1 in a product or exponentiation).
++ Error: if x is not a symbol.
multiple: F -> F
++ multiple(x) tells the pattern matcher that x should
++ preferably match a multi-term quantity in a sum or product.
++ For matching on lists, multiple(x) tells the pattern matcher
++ that x should match a list instead of an element of a list.
++ Error: if x is not a symbol.
Implementation ==> add
macro PMOPT == '%pmoptional
macro PMMULT == '%pmmultiple
macro PMCONST == '%pmconstant
mkk : BasicOperator -> F
mkk op == kernel(op, empty()$List(F))
ass(k: K, s: Identifier): F ==
has?(op := operator k, s) => k::F
mkk assert(copy op, s)
asst(k: K, s: Identifier): F ==
has?(op := operator k, s) => k::F
mkk assert(op, s)
assert(x, s) ==
retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
asst(retract(x)@K, s)
error "assert must be applied to symbols only"
constant x ==
retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
ass(retract(x)@K, PMCONST)
error "constant must be applied to symbols only"
optional x ==
retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
ass(retract(x)@K, PMOPT)
error "optional must be applied to symbols only"
multiple x ==
retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
ass(retract(x)@K, PMMULT)
error "multiple must be applied to symbols only"
@
\section{package PMPRED AttachPredicates}
<<package PMPRED AttachPredicates>>=
)abbrev package PMPRED AttachPredicates
++ Predicates for pattern-matching
++ Author: Manuel Bronstein
++ Description: Attaching predicates to symbols for pattern matching.
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
AttachPredicates(D:Type): Exports == Implementation where
FE ==> Expression Integer
Exports ==> with
suchThat: (Symbol, D -> Boolean) -> FE
++ suchThat(x, foo) attaches the predicate foo to x.
suchThat: (Symbol, List(D -> Boolean)) -> FE
++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate
++ f1 and f2 and ... and fn to x.
Implementation ==> add
import FunctionSpaceAttachPredicates(Integer, FE, D)
suchThat(p:Symbol, f:D -> Boolean) == suchThat(p::FE, f)
suchThat(p:Symbol, l:List(D -> Boolean)) == suchThat(p::FE, l)
@
\section{package PMASS PatternMatchAssertions}
<<package PMASS PatternMatchAssertions>>=
)abbrev package PMASS PatternMatchAssertions
++ Assertions for pattern-matching
++ Author: Manuel Bronstein
++ Description: Attaching assertions to symbols for pattern matching.
++ Date Created: 21 Mar 1989
++ Date Last Updated: 23 May 1990
++ Keywords: pattern, matching.
PatternMatchAssertions(): Exports == Implementation where
FE ==> Expression Integer
Exports ==> with
assert : (Symbol, Identifier) -> FE
++ assert(x, s) makes the assertion s about x.
constant: Symbol -> FE
++ constant(x) tells the pattern matcher that x should
++ match only the symbol 'x and no other quantity.
optional: Symbol -> FE
++ optional(x) tells the pattern matcher that x can match
++ an identity (0 in a sum, 1 in a product or exponentiation).;
multiple: Symbol -> FE
++ multiple(x) tells the pattern matcher that x should
++ preferably match a multi-term quantity in a sum or product.
++ For matching on lists, multiple(x) tells the pattern matcher
++ that x should match a list instead of an element of a list.
Implementation ==> add
import FunctionSpaceAssertions(Integer, FE)
constant x == constant(x::FE)
multiple x == multiple(x::FE)
optional x == optional(x::FE)
assert(x, s) == assert(x::FE, s)
@
\section{domain HACKPI Pi}
<<domain HACKPI Pi>>=
)abbrev domain HACKPI Pi
++ Expressions in %pi only
++ Author: Manuel Bronstein
++ Description:
++ Symbolic fractions in %pi with integer coefficients;
++ The point for using Pi as the default domain for those fractions
++ is that Pi is coercible to the float types, and not Expression.
++ Date Created: 21 Feb 1990
++ Date Last Updated: 12 Mai 1992
Pi(): Exports == Implementation where
PZ ==> Polynomial Integer
UP ==> SparseUnivariatePolynomial Integer
RF ==> Fraction UP
Exports ==> Join(Field, CharacteristicZero, RetractableTo Integer,
RetractableTo Fraction Integer, RealConstant,
CoercibleTo DoubleFloat, CoercibleTo Float,
ConvertibleTo RF, ConvertibleTo InputForm) with
pi: () -> % ++ pi() returns the symbolic %pi.
Implementation ==> RF add
Rep := RF
sympi := '%pi
p2sf: UP -> DoubleFloat
p2f : UP -> Float
p2o : UP -> OutputForm
p2i : UP -> InputForm
p2p: UP -> PZ
pi() == (monomial(1, 1)$UP :: RF) pretend %
convert(x:%):RF == x pretend RF
convert(x:%):Float == x::Float
convert(x:%):DoubleFloat == x::DoubleFloat
coerce(x:%):DoubleFloat == p2sf(numer x) / p2sf(denom x)
coerce(x:%):Float == p2f(numer x) / p2f(denom x)
p2o p == outputForm(p, sympi::OutputForm)
p2i p == convert p2p p
p2p p ==
ans:PZ := 0
while p ~= 0 repeat
ans := ans + monomial(leadingCoefficient(p)::PZ, sympi, degree p)
p := reductum p
ans
coerce(x:%):OutputForm ==
(r := retractIfCan(x)@Union(UP, "failed")) case UP => p2o(r::UP)
p2o(numer x) / p2o(denom x)
convert(x:%):InputForm ==
(r := retractIfCan(x)@Union(UP, "failed")) case UP => p2i(r::UP)
p2i(numer x) / p2i(denom x)
p2sf p ==
map(#1::DoubleFloat, p)$SparseUnivariatePolynomialFunctions2(
Integer, DoubleFloat) (pi()$DoubleFloat)
p2f p ==
map(#1::Float, p)$SparseUnivariatePolynomialFunctions2(
Integer, Float) (pi()$Float)
@
\section{package PICOERCE PiCoercions}
<<package PICOERCE PiCoercions>>=
)abbrev package PICOERCE PiCoercions
++ Coercions from %pi to symbolic or numeric domains
++ Author: Manuel Bronstein
++ Description:
++ Provides a coercion from the symbolic fractions in %pi with
++ integer coefficients to any Expression type.
++ Date Created: 21 Feb 1990
++ Date Last Updated: 21 Feb 1990
PiCoercions(R: IntegralDomain): with
coerce: Pi -> Expression R
++ coerce(f) returns f as an Expression(R).
== add
p2e: SparseUnivariatePolynomial Integer -> Expression R
coerce(x:Pi):Expression(R) ==
f := convert(x)@Fraction(SparseUnivariatePolynomial Integer)
p2e(numer f) / p2e(denom f)
p2e p ==
map(#1::Expression(R), p)$SparseUnivariatePolynomialFunctions2(
Integer, Expression R) (pi()$Expression(R))
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
-- SPAD files for the functional world should be compiled in the
-- following order:
--
-- op kl fspace algfunc elemntry combfunc EXPR
<<domain EXPR Expression>>
<<package PAN2EXPR PolynomialAN2Expression>>
<<package EXPR2 ExpressionFunctions2>>
<<package PMPREDFS FunctionSpaceAttachPredicates>>
<<package PMASSFS FunctionSpaceAssertions>>
<<package PMPRED AttachPredicates>>
<<package PMASS PatternMatchAssertions>>
<<domain HACKPI Pi>>
<<package PICOERCE PiCoercions>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|