aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/elemntry.spad.pamphlet
blob: e102aaded509f3941e80a168b037ef256b248122 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra elemntry.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package EF ElementaryFunction}
<<package EF ElementaryFunction>>=
)abbrev package EF ElementaryFunction
++ Author: Manuel Bronstein
++ Date Created: 1987
++ Date Last Updated: 10 April 1995
++ Keywords: elementary, function, logarithm, exponential.
++ Examples:  )r EF INPUT
++ Description: Provides elementary functions over an integral domain.
ElementaryFunction(R, F): Exports == Implementation where
  R: IntegralDomain
  F: Join(FunctionSpace R, RadicalCategory)

  B   ==> Boolean
  L   ==> List
  Z   ==> Integer
  OP  ==> BasicOperator
  K   ==> Kernel F
  INV ==> error "Invalid argument"

  Exports ==> with
    exp     : F -> F
	++ exp(x) applies the exponential operator to x
    log     : F -> F
	++ log(x) applies the logarithm operator to x
    sin     : F -> F
	++ sin(x) applies the sine operator to x
    cos     : F -> F
	++ cos(x) applies the cosine operator to x 
    tan     : F -> F
	++ tan(x) applies the tangent operator to x
    cot     : F -> F
	++ cot(x) applies the cotangent operator to x
    sec     : F -> F
	++ sec(x) applies the secant operator to x
    csc     : F -> F
	++ csc(x) applies the cosecant operator to x
    asin    : F -> F
	++ asin(x) applies the inverse sine operator to x 
    acos    : F -> F
	++ acos(x) applies the inverse cosine operator to x
    atan    : F -> F
	++ atan(x) applies the inverse tangent operator to x
    acot    : F -> F
	++ acot(x) applies the inverse cotangent operator to x
    asec    : F -> F
	++ asec(x) applies the inverse secant operator to x
    acsc    : F -> F
	++ acsc(x) applies the inverse cosecant operator to x
    sinh    : F -> F
	++ sinh(x) applies the hyperbolic sine operator to x 
    cosh    : F -> F
	++ cosh(x) applies the hyperbolic cosine operator to x
    tanh    : F -> F
	++ tanh(x) applies the hyperbolic tangent operator to x
    coth    : F -> F
	++ coth(x) applies the hyperbolic cotangent operator to x
    sech    : F -> F
	++ sech(x) applies the hyperbolic secant operator to x
    csch    : F -> F
	++ csch(x) applies the hyperbolic cosecant operator to x
    asinh   : F -> F
	++ asinh(x) applies the inverse hyperbolic sine operator to x
    acosh   : F -> F
	++ acosh(x) applies the inverse hyperbolic cosine operator to x
    atanh   : F -> F
	++ atanh(x) applies the inverse hyperbolic tangent operator to x
    acoth   : F -> F
	++ acoth(x) applies the inverse hyperbolic cotangent operator to x
    asech   : F -> F
	++ asech(x) applies the	inverse hyperbolic secant operator to x
    acsch   : F -> F
	++ acsch(x) applies the inverse hyperbolic cosecant operator to x
    pi      : () -> F
	++ pi() returns the pi operator
    belong? : OP -> Boolean
	++ belong?(p) returns true if operator p is elementary
    operator: OP -> OP
	++ operator(p) returns an elementary operator with the same symbol as p
    -- the following should be local, but are conditional
    iisqrt2   : () -> F
	++ iisqrt2() should be local but conditional
    iisqrt3   : () -> F
	++ iisqrt3() should be local but conditional
    iiexp     : F -> F
	++ iiexp(x) should be local but conditional
    iilog     : F -> F
	++ iilog(x) should be local but conditional
    iisin     : F -> F
	++ iisin(x) should be local but conditional
    iicos     : F -> F
	++ iicos(x) should be local but conditional
    iitan     : F -> F
	++ iitan(x) should be local but conditional
    iicot     : F -> F
	++ iicot(x) should be local but conditional
    iisec     : F -> F
	++ iisec(x) should be local but conditional
    iicsc     : F -> F
	++ iicsc(x) should be local but conditional
    iiasin    : F -> F
	++ iiasin(x) should be local but conditional
    iiacos    : F -> F
	++ iiacos(x) should be local but conditional
    iiatan    : F -> F
	++ iiatan(x) should be local but conditional
    iiacot    : F -> F
	++ iiacot(x) should be local but conditional
    iiasec    : F -> F
	++ iiasec(x) should be local but conditional
    iiacsc    : F -> F
	++ iiacsc(x) should be local but conditional
    iisinh    : F -> F
	++ iisinh(x) should be local but conditional
    iicosh    : F -> F
	++ iicosh(x) should be local but conditional
    iitanh    : F -> F
	++ iitanh(x) should be local but conditional
    iicoth    : F -> F
	++ iicoth(x) should be local but conditional
    iisech    : F -> F
	++ iisech(x) should be local but conditional
    iicsch    : F -> F
	++ iicsch(x) should be local but conditional
    iiasinh   : F -> F
	++ iiasinh(x) should be local but conditional
    iiacosh   : F -> F
	++ iiacosh(x) should be local but conditional
    iiatanh   : F -> F
	++ iiatanh(x) should be local but conditional
    iiacoth   : F -> F
	++ iiacoth(x) should be local but conditional
    iiasech   : F -> F
	++ iiasech(x) should be local but conditional
    iiacsch   : F -> F
	++ iiacsch(x) should be local but conditional
    specialTrigs:(F, L Record(func:F,pole:B)) -> Union(F, "failed")
	++ specialTrigs(x,l) should be local but conditional
    localReal?: F -> Boolean
	++ localReal?(x) should be local but conditional

  Implementation ==> add
    ipi      : List F -> F
    iexp     : F -> F
    ilog     : F -> F
    iiilog   : F -> F
    isin     : F -> F
    icos     : F -> F
    itan     : F -> F
    icot     : F -> F
    isec     : F -> F
    icsc     : F -> F
    iasin    : F -> F
    iacos    : F -> F
    iatan    : F -> F
    iacot    : F -> F
    iasec    : F -> F
    iacsc    : F -> F
    isinh    : F -> F
    icosh    : F -> F
    itanh    : F -> F
    icoth    : F -> F
    isech    : F -> F
    icsch    : F -> F
    iasinh   : F -> F
    iacosh   : F -> F
    iatanh   : F -> F
    iacoth   : F -> F
    iasech   : F -> F
    iacsch   : F -> F
    dropfun  : F -> F
    kernel   : F -> K
    posrem   :(Z, Z) -> Z
    iisqrt1  : () -> F
    valueOrPole : Record(func:F, pole:B) -> F

    oppi  := operator('pi)$CommonOperators
    oplog := operator('log)$CommonOperators
    opexp := operator('exp)$CommonOperators
    opsin := operator('sin)$CommonOperators
    opcos := operator('cos)$CommonOperators
    optan := operator('tan)$CommonOperators
    opcot := operator('cot)$CommonOperators
    opsec := operator('sec)$CommonOperators
    opcsc := operator('csc)$CommonOperators
    opasin := operator('asin)$CommonOperators
    opacos := operator('acos)$CommonOperators
    opatan := operator('atan)$CommonOperators
    opacot := operator('acot)$CommonOperators
    opasec := operator('asec)$CommonOperators
    opacsc := operator('acsc)$CommonOperators
    opsinh := operator('sinh)$CommonOperators
    opcosh := operator('cosh)$CommonOperators
    optanh := operator('tanh)$CommonOperators
    opcoth := operator('coth)$CommonOperators
    opsech := operator('sech)$CommonOperators
    opcsch := operator('csch)$CommonOperators
    opasinh := operator('asinh)$CommonOperators
    opacosh := operator('acosh)$CommonOperators
    opatanh := operator('atanh)$CommonOperators
    opacoth := operator('acoth)$CommonOperators
    opasech := operator('asech)$CommonOperators
    opacsch := operator('acsch)$CommonOperators

    -- Pi is a domain...
    Pie, isqrt1, isqrt2, isqrt3: F

    -- following code is conditionalized on arbitraryPrecesion to recompute in
    -- case user changes the precision

    if R has TranscendentalFunctionCategory then
      Pie := pi()$R :: F
    else
      Pie := kernel(oppi, nil()$List(F))

    if R has TranscendentalFunctionCategory and R has arbitraryPrecision then
      pi() == pi()$R :: F
    else
      pi() == Pie

    if R has imaginary: () -> R then
      isqrt1 := imaginary()$R :: F
    else isqrt1 := sqrt(-1::F)

    if R has RadicalCategory then
      isqrt2 := sqrt(2::R)::F
      isqrt3 := sqrt(3::R)::F
    else
      isqrt2 := sqrt(2::F)
      isqrt3 := sqrt(3::F)

    iisqrt1() == isqrt1
    if R has RadicalCategory and R has arbitraryPrecision then
      iisqrt2() == sqrt(2::R)::F
      iisqrt3() == sqrt(3::R)::F
    else
      iisqrt2() == isqrt2
      iisqrt3() == isqrt3

    ipi l == pi()
    log x == oplog x
    exp x == opexp x
    sin x == opsin x
    cos x == opcos x
    tan x == optan x
    cot x == opcot x
    sec x == opsec x
    csc x == opcsc x
    asin x == opasin x
    acos x == opacos x
    atan x == opatan x
    acot x == opacot x
    asec x == opasec x
    acsc x == opacsc x
    sinh x == opsinh x
    cosh x == opcosh x
    tanh x == optanh x
    coth x == opcoth x
    sech x == opsech x
    csch x == opcsch x
    asinh x == opasinh x
    acosh x == opacosh x
    atanh x == opatanh x
    acoth x == opacoth x
    asech x == opasech x
    acsch x == opacsch x
    kernel x == retract(x)@K

    posrem(n, m)    == (negative?(r := n rem m) => r + m; r)
    valueOrPole rec == (rec.pole => INV; rec.func)
    belong? op      == has?(op, 'elem)

    operator op ==
      is?(op,'pi)    => oppi
      is?(op,'log)   => oplog
      is?(op,'exp)   => opexp
      is?(op,'sin)   => opsin
      is?(op,'cos)   => opcos
      is?(op,'tan)   => optan
      is?(op,'cot)   => opcot
      is?(op,'sec)   => opsec
      is?(op,'csc)   => opcsc
      is?(op,'asin)  => opasin
      is?(op,'acos)  => opacos
      is?(op,'atan)  => opatan
      is?(op,'acot)  => opacot
      is?(op,'asec)  => opasec
      is?(op,'acsc)  => opacsc
      is?(op,'sinh)  => opsinh
      is?(op,'cosh)  => opcosh
      is?(op,'tanh)  => optanh
      is?(op,'coth)  => opcoth
      is?(op,'sech)  => opsech
      is?(op,'csch)  => opcsch
      is?(op,'asinh) => opasinh
      is?(op,'acosh) => opacosh
      is?(op,'atanh) => opatanh
      is?(op,'acoth) => opacoth
      is?(op,'asech) => opasech
      is?(op,'acsch) => opacsch
      error "Not an elementary operator"

    dropfun x ==
      ((k := retractIfCan(x)@Union(K, "failed")) case "failed") or
        empty?(argument(k::K)) => 0
      first argument(k::K)

    if R has RetractableTo Z then
      specialTrigs(x, values) ==
        (r := retractIfCan(y := x/pi())@Union(Fraction Z, "failed"))
          case "failed" => "failed"
        q := r::Fraction(Integer)
        m := minIndex values
        (n := retractIfCan(q)@Union(Z, "failed")) case Z =>
          even?(n::Z) => valueOrPole(values.m)
          valueOrPole(values.(m+1))
        (n := retractIfCan(2*q)@Union(Z, "failed")) case Z =>
          one?(s := posrem(n::Z, 4)) => valueOrPole(values.(m+2))
          valueOrPole(values.(m+3))
        (n := retractIfCan(3*q)@Union(Z, "failed")) case Z =>
          one?(s := posrem(n::Z, 6)) => valueOrPole(values.(m+4))
          s = 2 => valueOrPole(values.(m+5))
          s = 4 => valueOrPole(values.(m+6))
          valueOrPole(values.(m+7))
        (n := retractIfCan(4*q)@Union(Z, "failed")) case Z =>
          one?(s := posrem(n::Z, 8)) => valueOrPole(values.(m+8))
          s = 3 => valueOrPole(values.(m+9))
          s = 5 => valueOrPole(values.(m+10))
          valueOrPole(values.(m+11))
        (n := retractIfCan(6*q)@Union(Z, "failed")) case Z =>
          one?(s := posrem(n::Z, 12)) => valueOrPole(values.(m+12))
          s = 5 => valueOrPole(values.(m+13))
          s = 7 => valueOrPole(values.(m+14))
          valueOrPole(values.(m+15))
        "failed"

    else specialTrigs(x, values) == "failed"

    isin x ==
      zero? x => 0
      y := dropfun x
      is?(x, opasin) => y
      is?(x, opacos) => sqrt(1 - y**2)
      is?(x, opatan) => y / sqrt(1 + y**2)
      is?(x, opacot) => inv sqrt(1 + y**2)
      is?(x, opasec) => sqrt(y**2 - 1) / y
      is?(x, opacsc) => inv y
      h  := inv(2::F)
      s2 := h * iisqrt2()
      s3 := h * iisqrt3()
      u  := specialTrigs(x, [[0,false], [0,false], [1,false], [-1,false],
                         [s3,false], [s3,false], [-s3,false], [-s3,false],
                          [s2,false], [s2,false], [-s2,false], [-s2,false],
                           [h,false], [h,false], [-h,false], [-h,false]])
      u case F => u :: F
      kernel(opsin, x)

    icos x ==
      zero? x => 1
      y := dropfun x
      is?(x, opasin) => sqrt(1 - y**2)
      is?(x, opacos) => y
      is?(x, opatan) => inv sqrt(1 + y**2)
      is?(x, opacot) => y / sqrt(1 + y**2)
      is?(x, opasec) => inv y
      is?(x, opacsc) => sqrt(y**2 - 1) / y
      h  := inv(2::F)
      s2 := h * iisqrt2()
      s3 := h * iisqrt3()
      u  := specialTrigs(x, [[1,false],[-1,false], [0,false], [0,false],
                             [h,false],[-h,false],[-h,false],[h,false],
                              [s2,false],[-s2,false],[-s2,false],[s2,false],
                               [s3,false], [-s3,false],[-s3,false],[s3,false]])
      u case F => u :: F
      kernel(opcos, x)

    itan x ==
      zero? x => 0
      y := dropfun x
      is?(x, opasin) => y / sqrt(1 - y**2)
      is?(x, opacos) => sqrt(1 - y**2) / y
      is?(x, opatan) => y
      is?(x, opacot) => inv y
      is?(x, opasec) => sqrt(y**2 - 1)
      is?(x, opacsc) => inv sqrt(y**2 - 1)
      s33 := (s3 := iisqrt3()) / (3::F)
      u := specialTrigs(x, [[0,false], [0,false], [0,true], [0,true],
                      [s3,false], [-s3,false], [s3,false], [-s3,false],
                       [1,false], [-1,false], [1,false], [-1,false],
                        [s33,false], [-s33, false], [s33,false], [-s33, false]])
      u case F => u :: F
      kernel(optan, x)

    icot x ==
      zero? x => INV
      y := dropfun x
      is?(x, opasin) => sqrt(1 - y**2) / y
      is?(x, opacos) => y / sqrt(1 - y**2)
      is?(x, opatan) => inv y
      is?(x, opacot) => y
      is?(x, opasec) => inv sqrt(y**2 - 1)
      is?(x, opacsc) => sqrt(y**2 - 1)
      s33 := (s3 := iisqrt3()) / (3::F)
      u := specialTrigs(x, [[0,true], [0,true], [0,false], [0,false],
                         [s33,false], [-s33,false], [s33,false], [-s33,false],
                          [1,false], [-1,false], [1,false], [-1,false],
                           [s3,false], [-s3, false], [s3,false], [-s3, false]])
      u case F => u :: F
      kernel(opcot, x)

    isec x ==
      zero? x => 1
      y := dropfun x
      is?(x, opasin) => inv sqrt(1 - y**2)
      is?(x, opacos) => inv y
      is?(x, opatan) => sqrt(1 + y**2)
      is?(x, opacot) => sqrt(1 + y**2) / y
      is?(x, opasec) => y
      is?(x, opacsc) => y / sqrt(y**2 - 1)
      s2 := iisqrt2()
      s3 := 2 * iisqrt3() / (3::F)
      h  := 2::F
      u  := specialTrigs(x, [[1,false],[-1,false],[0,true],[0,true],
                           [h,false], [-h,false], [-h,false], [h,false],
                            [s2,false], [-s2,false], [-s2,false], [s2,false],
                             [s3,false], [-s3,false], [-s3,false], [s3,false]])
      u case F => u :: F
      kernel(opsec, x)

    icsc x ==
      zero? x => INV
      y := dropfun x
      is?(x, opasin) => inv y
      is?(x, opacos) => inv sqrt(1 - y**2)
      is?(x, opatan) => sqrt(1 + y**2) / y
      is?(x, opacot) => sqrt(1 + y**2)
      is?(x, opasec) => y / sqrt(y**2 - 1)
      is?(x, opacsc) => y
      s2 := iisqrt2()
      s3 := 2 * iisqrt3() / (3::F)
      h  := 2::F
      u  := specialTrigs(x, [[0,true], [0,true], [1,false], [-1,false],
                            [s3,false], [s3,false], [-s3,false], [-s3,false],
                              [s2,false], [s2,false], [-s2,false], [-s2,false],
                                 [h,false], [h,false], [-h,false], [-h,false]])
      u case F => u :: F
      kernel(opcsc, x)

    iasin x ==
      zero? x => 0
      one? x =>   pi() / (2::F)
      x = -1 => - pi() / (2::F)
      y := dropfun x
      is?(x, opsin) => y
      is?(x, opcos) => pi() / (2::F) - y
      kernel(opasin, x)

    iacos x ==
      zero? x => pi() / (2::F)
      one? x => 0
      x = -1 => pi()
      y := dropfun x
      is?(x, opsin) => pi() / (2::F) - y
      is?(x, opcos) => y
      kernel(opacos, x)

    iatan x ==
      zero? x => 0
      one? x =>   pi() / (4::F)
      x = -1 => - pi() / (4::F)
      x = (r3:=iisqrt3()) => pi() / (3::F)
      one?(x*r3)          => pi() / (6::F)
      y := dropfun x
      is?(x, optan) => y
      is?(x, opcot) => pi() / (2::F) - y
      kernel(opatan, x)

    iacot x ==
      zero? x =>   pi() / (2::F)
      one? x  =>   pi() / (4::F)
      x = -1  =>   3 * pi() / (4::F)
      x = (r3:=iisqrt3())  =>  pi() / (6::F)
      x = -r3              =>  5 * pi() / (6::F)
      one?(xx:=x*r3)       =>  pi() / (3::F)
      xx = -1           =>     2* pi() / (3::F)
      y := dropfun x
      is?(x, optan) => pi() / (2::F) - y
      is?(x, opcot) => y
      kernel(opacot, x)

    iasec x ==
      zero? x => INV
      one? x => 0
      x = -1 => pi()
      y := dropfun x
      is?(x, opsec) => y
      is?(x, opcsc) => pi() / (2::F) - y
      kernel(opasec, x)

    iacsc x ==
      zero? x => INV
      one? x =>   pi() / (2::F)
      x = -1 => - pi() / (2::F)
      y := dropfun x
      is?(x, opsec) => pi() / (2::F) - y
      is?(x, opcsc) => y
      kernel(opacsc, x)

    isinh x ==
      zero? x => 0
      y := dropfun x
      is?(x, opasinh) => y
      is?(x, opacosh) => sqrt(y**2 - 1)
      is?(x, opatanh) => y / sqrt(1 - y**2)
      is?(x, opacoth) => - inv sqrt(y**2 - 1)
      is?(x, opasech) => sqrt(1 - y**2) / y
      is?(x, opacsch) => inv y
      kernel(opsinh, x)

    icosh x ==
      zero? x => 1
      y := dropfun x
      is?(x, opasinh) => sqrt(y**2 + 1)
      is?(x, opacosh) => y
      is?(x, opatanh) => inv sqrt(1 - y**2)
      is?(x, opacoth) => y / sqrt(y**2 - 1)
      is?(x, opasech) => inv y
      is?(x, opacsch) => sqrt(y**2 + 1) / y
      kernel(opcosh, x)

    itanh x ==
      zero? x => 0
      y := dropfun x
      is?(x, opasinh) => y / sqrt(y**2 + 1)
      is?(x, opacosh) => sqrt(y**2 - 1) / y
      is?(x, opatanh) => y
      is?(x, opacoth) => inv y
      is?(x, opasech) => sqrt(1 - y**2)
      is?(x, opacsch) => inv sqrt(y**2 + 1)
      kernel(optanh, x)

    icoth x ==
      zero? x => INV
      y := dropfun x
      is?(x, opasinh) => sqrt(y**2 + 1) / y
      is?(x, opacosh) => y / sqrt(y**2 - 1)
      is?(x, opatanh) => inv y
      is?(x, opacoth) => y
      is?(x, opasech) => inv sqrt(1 - y**2)
      is?(x, opacsch) => sqrt(y**2 + 1)
      kernel(opcoth, x)

    isech x ==
      zero? x => 1
      y := dropfun x
      is?(x, opasinh) => inv sqrt(y**2 + 1)
      is?(x, opacosh) => inv y
      is?(x, opatanh) => sqrt(1 - y**2)
      is?(x, opacoth) => sqrt(y**2 - 1) / y
      is?(x, opasech) => y
      is?(x, opacsch) => y / sqrt(y**2 + 1)
      kernel(opsech, x)

    icsch x ==
      zero? x => INV
      y := dropfun x
      is?(x, opasinh) => inv y
      is?(x, opacosh) => inv sqrt(y**2 - 1)
      is?(x, opatanh) => sqrt(1 - y**2) / y
      is?(x, opacoth) => - sqrt(y**2 - 1)
      is?(x, opasech) => y / sqrt(1 - y**2)
      is?(x, opacsch) => y
      kernel(opcsch, x)

    iasinh x ==
      is?(x, opsinh) => first argument kernel x
      kernel(opasinh, x)

    iacosh x ==
      is?(x, opcosh) => first argument kernel x
      kernel(opacosh, x)

    iatanh x ==
      is?(x, optanh) => first argument kernel x
      kernel(opatanh, x)

    iacoth x ==
      is?(x, opcoth) => first argument kernel x
      kernel(opacoth, x)

    iasech x ==
      is?(x, opsech) => first argument kernel x
      kernel(opasech, x)

    iacsch x ==
      is?(x, opcsch) => first argument kernel x
      kernel(opacsch, x)

    iexp x ==
      zero? x => 1
      is?(x, oplog) => first argument kernel x
      before?(x,0) and empty? variables x => inv iexp(-x)
      h  := inv(2::F)
      i  := iisqrt1()
      s2 := h * iisqrt2()
      s3 := h * iisqrt3()
      u  := specialTrigs(x / i, [[1,false],[-1,false], [i,false], [-i,false],
            [h + i * s3,false], [-h + i * s3, false], [-h - i * s3, false],
             [h - i * s3, false], [s2 + i * s2, false], [-s2 + i * s2, false],
              [-s2 - i * s2, false], [s2 - i * s2, false], [s3 + i * h, false],
               [-s3 + i * h, false], [-s3 - i * h, false], [s3 - i * h, false]])
      u case F => u :: F
      kernel(opexp, x)

-- THIS DETERMINES WHEN TO PERFORM THE log exp f -> f SIMPLIFICATION
-- CURRENT BEHAVIOR:
--     IF R IS COMPLEX(S) THEN ONLY ELEMENTS WHICH ARE RETRACTABLE TO R
--     AND EQUAL TO THEIR CONJUGATES ARE DEEMED REAL (OVERRESTRICTIVE FOR NOW)
--     OTHERWISE (e.g. R = INT OR FRAC INT), ALL THE ELEMENTS ARE DEEMED REAL

    if (R has imaginary:() -> R) and (R has conjugate: R -> R) then
         localReal? x ==
            (u := retractIfCan(x)@Union(R, "failed")) case R
               and (u::R) = conjugate(u::R)

    else localReal? x == true

    iiilog x ==
      zero? x => INV
      one? x => 0
      (u := isExpt(x, opexp)) case Record(var:K, exponent:Integer) =>
           rec := u::Record(var:K, exponent:Integer)
           arg := first argument(rec.var);
           localReal? arg => rec.exponent * first argument(rec.var);
           ilog x
      ilog x

    ilog x ==
      ((num1 := one?(num := numer x)) or num = -1) and (den := denom x) ~= 1
        and empty? variables x => - kernel(oplog, (num1 => den; -den)::F)
      kernel(oplog, x)

    if R has ElementaryFunctionCategory then
      iilog x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iiilog x
        log(r::R)::F

      iiexp x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iexp x
        exp(r::R)::F

    else
      iilog x == iiilog x
      iiexp x == iexp x

    if R has TrigonometricFunctionCategory then
      iisin x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isin x
        sin(r::R)::F

      iicos x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icos x
        cos(r::R)::F

      iitan x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => itan x
        tan(r::R)::F

      iicot x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icot x
        cot(r::R)::F

      iisec x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isec x
        sec(r::R)::F

      iicsc x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icsc x
        csc(r::R)::F

    else
      iisin x == isin x
      iicos x == icos x
      iitan x == itan x
      iicot x == icot x
      iisec x == isec x
      iicsc x == icsc x

    if R has ArcTrigonometricFunctionCategory then
      iiasin x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasin x
        asin(r::R)::F

      iiacos x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacos x
        acos(r::R)::F

      iiatan x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iatan x
        atan(r::R)::F

      iiacot x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacot x
        acot(r::R)::F

      iiasec x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasec x
        asec(r::R)::F

      iiacsc x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacsc x
        acsc(r::R)::F

    else
      iiasin x == iasin x
      iiacos x == iacos x
      iiatan x == iatan x
      iiacot x == iacot x
      iiasec x == iasec x
      iiacsc x == iacsc x

    if R has HyperbolicFunctionCategory then
      iisinh x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isinh x
        sinh(r::R)::F

      iicosh x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icosh x
        cosh(r::R)::F

      iitanh x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => itanh x
        tanh(r::R)::F

      iicoth x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icoth x
        coth(r::R)::F

      iisech x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => isech x
        sech(r::R)::F

      iicsch x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => icsch x
        csch(r::R)::F

    else
      iisinh x == isinh x
      iicosh x == icosh x
      iitanh x == itanh x
      iicoth x == icoth x
      iisech x == isech x
      iicsch x == icsch x

    if R has ArcHyperbolicFunctionCategory then
      iiasinh x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasinh x
        asinh(r::R)::F

      iiacosh x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacosh x
        acosh(r::R)::F

      iiatanh x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iatanh x
        atanh(r::R)::F

      iiacoth x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacoth x
        acoth(r::R)::F

      iiasech x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iasech x
        asech(r::R)::F

      iiacsch x ==
        (r:=retractIfCan(x)@Union(R,"failed")) case "failed" => iacsch x
        acsch(r::R)::F

    else
      iiasinh x == iasinh x
      iiacosh x == iacosh x
      iiatanh x == iatanh x
      iiacoth x == iacoth x
      iiasech x == iasech x
      iiacsch x == iacsch x

    evaluate(oppi, ipi)$BasicOperatorFunctions1(F)
    evaluate(oplog, iilog)
    evaluate(opexp, iiexp)
    evaluate(opsin, iisin)
    evaluate(opcos, iicos)
    evaluate(optan, iitan)
    evaluate(opcot, iicot)
    evaluate(opsec, iisec)
    evaluate(opcsc, iicsc)
    evaluate(opasin, iiasin)
    evaluate(opacos, iiacos)
    evaluate(opatan, iiatan)
    evaluate(opacot, iiacot)
    evaluate(opasec, iiasec)
    evaluate(opacsc, iiacsc)
    evaluate(opsinh, iisinh)
    evaluate(opcosh, iicosh)
    evaluate(optanh, iitanh)
    evaluate(opcoth, iicoth)
    evaluate(opsech, iisech)
    evaluate(opcsch, iicsch)
    evaluate(opasinh, iiasinh)
    evaluate(opacosh, iiacosh)
    evaluate(opatanh, iiatanh)
    evaluate(opacoth, iiacoth)
    evaluate(opasech, iiasech)
    evaluate(opacsch, iiacsch)
    derivative(opexp, exp)
    derivative(oplog, inv)
    derivative(opsin, cos)
    derivative(opcos, - sin #1)
    derivative(optan, 1 + tan(#1)**2)
    derivative(opcot, - 1 - cot(#1)**2)
    derivative(opsec, tan(#1) * sec(#1))
    derivative(opcsc, - cot(#1) * csc(#1))
    derivative(opasin, inv sqrt(1 - #1**2))
    derivative(opacos, - inv sqrt(1 - #1**2))
    derivative(opatan, inv(1 + #1**2))
    derivative(opacot, - inv(1 + #1**2))
    derivative(opasec, inv(#1 * sqrt(#1**2 - 1)))
    derivative(opacsc, - inv(#1 * sqrt(#1**2 - 1)))
    derivative(opsinh, cosh)
    derivative(opcosh, sinh)
    derivative(optanh, 1 - tanh(#1)**2)
    derivative(opcoth, 1 - coth(#1)**2)
    derivative(opsech, - tanh(#1) * sech(#1))
    derivative(opcsch, - coth(#1) * csch(#1))
    derivative(opasinh, inv sqrt(1 + #1**2))
    derivative(opacosh, inv sqrt(#1**2 - 1))
    derivative(opatanh, inv(1 - #1**2))
    derivative(opacoth, inv(1 - #1**2))
    derivative(opasech, - inv(#1 * sqrt(1 - #1**2)))
    derivative(opacsch, - inv(#1 * sqrt(1 + #1**2)))

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2009, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

-- SPAD files for the functional world should be compiled in the
-- following order:
--
--   op  kl  fspace  algfunc  ELEMNTRY  expr
<<package EF ElementaryFunction>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}