1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra drawpak.spad}
\author{The Axiom Team}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package DRAWCX DrawComplex}
<<package DRAWCX DrawComplex>>=
)abbrev package DRAWCX DrawComplex
++ Description: \axiomType{DrawComplex} provides some facilities
++ for drawing complex functions.
C ==> Complex DoubleFloat
S ==> Segment DoubleFloat
PC ==> Record(rr:SF, th:SF)
INT ==> Integer
SF ==> DoubleFloat
NNI ==> NonNegativeInteger
VIEW3D ==> ThreeDimensionalViewport
ARRAY2 ==> TwoDimensionalArray
DrawComplex(): Exports == Implementation where
Exports == with
drawComplex: (C -> C,S,S,Boolean) -> VIEW3D
++ drawComplex(f,rRange,iRange,arrows?)
++ draws a complex function as a height field.
++ It uses the complex norm as the height and the complex argument as the color.
++ It will optionally draw arrows on the surface indicating the direction
++ of the complex value.\newline
++ Sample call:
++ \spad{f z == exp(1/z)}
++ \spad{drawComplex(f, 0.3..3, 0..2*%pi, false)}
++ Parameter descriptions:
++ f: the function to draw
++ rRange : the range of the real values
++ iRange : the range of imaginary values
++ arrows? : a flag indicating whether to draw the phase arrows for f
++ Call the functions \axiomFunFrom{setRealSteps}{DrawComplex} and
++ \axiomFunFrom{setImagSteps}{DrawComplex} to change the
++ number of steps used in each direction.
drawComplexVectorField: (C -> C,S,S) -> VIEW3D
++ drawComplexVectorField(f,rRange,iRange)
++ draws a complex vector field using arrows on the \spad{x--y} plane.
++ These vector fields should be viewed from the top by pressing the
++ "XY" translate button on the 3-d viewport control panel.\newline
++ Sample call:
++ \spad{f z == sin z}
++ \spad{drawComplexVectorField(f, -2..2, -2..2)}
++ Parameter descriptions:
++ f : the function to draw
++ rRange : the range of the real values
++ iRange : the range of the imaginary values
++ Call the functions \axiomFunFrom{setRealSteps}{DrawComplex} and
++ \axiomFunFrom{setImagSteps}{DrawComplex} to change the
++ number of steps used in each direction.
setRealSteps: INT -> INT
++ setRealSteps(i)
++ sets to i the number of steps to use in the real direction
++ when drawing complex functions. Returns i.
setImagSteps: INT -> INT
++ setImagSteps(i)
++ sets to i the number of steps to use in the imaginary direction
++ when drawing complex functions. Returns i.
setClipValue: SF-> SF
++ setClipValue(x)
++ sets to x the maximum value to plot when drawing complex functions. Returns x.
Implementation == add
-- relative size of the arrow head compared to the length of the arrow
arrowScale : SF := (0.125)::SF
arrowAngle: SF := pi()-pi()/(20::SF) -- angle of the arrow head
realSteps: INT := 11 -- the number of steps in the real direction
imagSteps: INT := 11 -- the number of steps in the imaginary direction
clipValue: SF := 10::SF -- the maximum length of a vector to draw
-- Add an arrow head to a line segment, which starts at 'p1', ends at 'p2',
-- has length 'len', and and angle 'arg'. We pass 'len' and 'arg' as
-- arguments since thet were already computed by the calling program
makeArrow(p1:Point SF, p2:Point SF, len: SF, arg:SF):List List Point SF ==
c1 := cos(arg + arrowAngle)
s1 := sin(arg + arrowAngle)
c2 := cos(arg - arrowAngle)
s2 := sin(arg - arrowAngle)
p3 := point [p2.1 + c1*arrowScale*len, p2.2 + s1*arrowScale*len,
p2.3, p2.4]
p4 := point [p2.1 + c2*arrowScale*len, p2.2 + s2*arrowScale*len,
p2.3, p2.4]
[[p1, p2, p3], [p2, p4]]
-- clip a value in the interval (-clip...clip)
clipFun(x:SF):SF ==
min(max(x, -clipValue), clipValue)
drawComplex(f, realRange, imagRange, arrows?) ==
import Point SF
delReal := (hi(realRange) - lo(realRange))/realSteps::SF
delImag := (hi(imagRange) - lo(imagRange))/imagSteps::SF
funTable: ARRAY2(PC) :=
new((realSteps::NNI)+1, (imagSteps::NNI)+1, [0,0]$PC)
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
for j in 1..imagSteps+1 repeat
z := f complex(real, imag)
funTable(i,j) := [clipFun(sqrt norm z), argument(z)]$PC
imag := imag + delImag
real := real + delReal
llp := empty()$(List List Point SF)
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
lp := empty()$(List Point SF)
for j in 1..imagSteps+1 repeat
p := point [real, imag, funTable(i,j).rr, funTable(i,j).th]
lp := cons(p, lp)
imag := imag + delImag
real := real + delReal
llp := cons(lp, llp)
space := mesh(llp)$(ThreeSpace SF)
if arrows? then
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
for j in 1..imagSteps+1 repeat
arg := funTable(i,j).th
p1 := point [real,imag, funTable(i,j).rr, arg]
len := delReal*2.0::SF
p2 := point [p1.1 + len*cos(arg), p1.2 + len*sin(arg),
p1.3, p1.4]
arrow := makeArrow(p1, p2, len, arg)
for a in arrow repeat curve(space, a)$(ThreeSpace SF)
imag := imag + delImag
real := real + delReal
makeViewport3D(space, "Complex Function")$VIEW3D
drawComplexVectorField(f, realRange, imagRange): VIEW3D ==
import Point SF
-- compute the steps size of the grid
delReal := (hi(realRange) - lo(realRange))/realSteps::SF
delImag := (hi(imagRange) - lo(imagRange))/imagSteps::SF
-- create the space to hold the arrows
space := create3Space()$(ThreeSpace SF)
real := lo(realRange)
for i in 1..realSteps+1 repeat
imag := lo(imagRange)
for j in 1..imagSteps+1 repeat
-- compute the function
z := f complex(real, imag)
-- get the direction of the arrow
arg := argument z
-- get the length of the arrow
len := clipFun(sqrt norm z)
-- create point at the base of the arrow
p1 := point [real, imag, 0::SF, arg]
-- scale the arrow length so it isn't too long
scaleLen := delReal * len
-- create the point at the top of the arrow
p2 := point [p1.1 + scaleLen*cos(arg), p1.2 + scaleLen*sin(arg),
0::SF, arg]
-- make the pointer at the top of the arrow
arrow := makeArrow(p1, p2, scaleLen, arg)
-- add the line segments in the arrow to the space
for a in arrow repeat curve(space, a)$(ThreeSpace SF)
imag := imag + delImag
real := real + delReal
-- draw the vector feild
makeViewport3D(space, "Complex Vector Field")$VIEW3D
-- set the number of steps to use in the real direction
setRealSteps(n) ==
realSteps := n
-- set the number of steps to use in the imaginary direction
setImagSteps(n) ==
imagSteps := n
-- set the maximum value to plot
setClipValue clip ==
clipValue := clip
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package DRAWCX DrawComplex>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|