1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra derham.spad}
\author{Larry A. Lambe}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{category LALG LeftAlgebra}
<<category LALG LeftAlgebra>>=
)abbrev category LALG LeftAlgebra
++ Author: Larry A. Lambe
++ Date : 03/01/89; revised 03/17/89; revised 12/02/90.
++ Description: The category of all left algebras over an arbitrary
++ ring.
LeftAlgebra(R:Ring): Category == Join(Ring, LeftModule R) with
--operations
coerce: R -> %
++ coerce(r) returns r * 1 where 1 is the identity of the
++ left algebra.
add
coerce(x:R):% == x * 1$%
@
\section{domain EAB ExtAlgBasis}
<<domain EAB ExtAlgBasis>>=
)abbrev domain EAB ExtAlgBasis
--% ExtAlgBasis
++ Author: Larry Lambe
++ Date created: 03/14/89
++ Description:
++ A domain used in the construction of the exterior algebra on a set
++ X over a ring R. This domain represents the set of all ordered
++ subsets of the set X, assumed to be in correspondance with
++ {1,2,3, ...}. The ordered subsets are themselves ordered
++ lexicographically and are in bijective correspondance with an ordered
++ basis of the exterior algebra. In this domain we are dealing strictly
++ with the exponents of basis elements which can only be 0 or 1.
-- Thus we really have L({0,1}).
++
++ The multiplicative identity element of the exterior algebra corresponds
++ to the empty subset of X. A coerce from List Integer to an
++ ordered basis element is provided to allow the convenient input of
++ expressions. Another exported function forgets the ordered structure
++ and simply returns the list corresponding to an ordered subset.
ExtAlgBasis(): Export == Implement where
I ==> Integer
L ==> List
NNI ==> NonNegativeInteger
Export == OrderedSet with
coerce : L I -> %
++ coerce(l) converts a list of 0's and 1's into a basis
++ element, where 1 (respectively 0) designates that the
++ variable of the corresponding index of l is (respectively, is not)
++ present.
++ Error: if an element of l is not 0 or 1.
degree : % -> NNI
++ degree(x) gives the numbers of 1's in x, i.e., the number
++ of non-zero exponents in the basis element that x represents.
exponents : % -> L I
++ exponents(x) converts a domain element into a list of zeros
++ and ones corresponding to the exponents in the basis element
++ that x represents.
-- subscripts : % -> L I
-- subscripts(x) looks at the exponents in x and converts
-- them to the proper subscripts
Nul : NNI -> %
++ Nul() gives the basis element 1 for the algebra generated
++ by n generators.
Implement == add
Rep := L I
x = y == x =$Rep y
x < y ==
null x => not null y
null y => false
first x = first y => rest x < rest y
first x > first y
coerce(li:(L I)) ==
for x in li repeat
if not one? x and not zero? x then
error "coerce: values can only be 0 and 1"
li
degree x == (_+/x)::NNI
exponents x == copy(x @ Rep)
-- subscripts x ==
-- cntr:I := 1
-- result: L I := []
-- for j in x repeat
-- if j = 1 then result := cons(cntr,result)
-- cntr:=cntr+1
-- reverse! result
Nul n == [0 for i in 1..n]
coerce(x: %) == coerce(x @ Rep)$(L I)
@
\section{domain ANTISYM AntiSymm}
<<domain ANTISYM AntiSymm>>=
)abbrev domain ANTISYM AntiSymm
++ Author: Larry A. Lambe
++ Date : 01/26/91.
++ Revised : May 19, 2013.
++
++ based on AntiSymmetric '89
++
++ Needs: ExtAlgBasis, FreeModule(Ring,OrderedSet), LALG, LALG-
++
++ Description: The domain of antisymmetric polynomials.
AntiSymm(R:Ring, lVar:List Symbol): Export == Implement where
LALG ==> LeftAlgebra
FMR ==> FM(R,EAB)
FM ==> FreeModule
I ==> Integer
L ==> List
EAB ==> ExtAlgBasis -- these are exponents of basis elements in order
NNI ==> NonNegativeInteger
O ==> OutputForm
base ==> k
coef ==> c
Term ==> Record(k:EAB,c:R)
Export == Join(LALG(R),RetractableTo(R),Functorial R) with
leadingCoefficient : % -> R
++ leadingCoefficient(p) returns the leading
++ coefficient of antisymmetric polynomial p.
-- leadingSupport : % -> EAB
leadingBasisTerm : % -> %
++ leadingBasisTerm(p) returns the leading
++ basis term of antisymmetric polynomial p.
reductum : % -> %
++ reductum(p), where p is an antisymmetric polynomial,
++ returns p minus the leading
++ term of p if p has at least two terms, and 0 otherwise.
coefficient : (%,%) -> R
++ coefficient(p,u) returns the coefficient of
++ the term in p containing the basis term u if such
++ a term exists, and 0 otherwise.
++ Error: if the second argument u is not a basis element.
generator : NNI -> %
++ generator(n) returns the nth multiplicative generator,
++ a basis term.
exp : L I -> %
++ exp([i1,...in]) returns \spad{u_1\^{i_1} ... u_n\^{i_n}}
homogeneous? : % -> Boolean
++ homogeneous?(p) tests if all of the terms of
++ p have the same degree.
retractable? : % -> Boolean
++ retractable?(p) tests if p is a 0-form,
++ i.e., if degree(p) = 0.
degree : % -> NNI
++ degree(p) returns the homogeneous degree of p.
-- 1 corresponds to the empty monomial Nul = [0,...,0]
-- from EAB. In terms of the exterior algebra on X,
-- it corresponds to the identity element which lives
-- in homogeneous degree 0.
Implement == FMR add
Rep := L Term
x,y : EAB
a,b : %
r : R
m : I
dim := #lVar
1 == [[ Nul(dim)$EAB, 1$R ]]
coefficient(a,u) ==
not null u.rest => error "2nd argument must be a basis element"
x := u.first.base
for t in a repeat
if t.base = x then return t.coef
if t.base < x then return 0
0
retractable?(a) ==
null a or (a.first.k = Nul(dim))
retractIfCan(a):Union(R,"failed") ==
null a => 0$R
a.first.k = Nul(dim) => leadingCoefficient a
"failed"
retract(a):R ==
null a => 0$R
leadingCoefficient a
homogeneous? a ==
null a => true
siz := +/exponents(a.first.base)
for ta in reductum a repeat
+/exponents(ta.base) ~= siz => return false
true
degree a ==
null a => 0$NNI
homogeneous? a => (+/exponents(a.first.base)) :: NNI
error "not a homogeneous element"
zo : (I,I) -> L I
zo(p,q) ==
p = 0 => [1,q]
q = 0 => [1,1]
[0,0]
getsgn : (EAB,EAB) -> I
getsgn(x,y) ==
sgn:I := 0
xx:L I := exponents x
yy:L I := exponents y
for i in 1 .. (dim-1) repeat
xx := rest xx
sgn := sgn + (+/xx)*yy.i
sgn rem 2 = 0 => 1
-1
Nalpha: (EAB,EAB) -> L I
Nalpha(x,y) ==
i:I := 1
dum2:L I := [0 for i in 1..dim]
for j in 1..dim repeat
dum:=zo((exponents x).j,(exponents y).j)
(i:= i*dum.1) = 0 => leave
dum2.j := dum.2
i = 0 => cons(i, dum2)
cons(getsgn(x,y), dum2)
a * b ==
null a => 0
null b => 0
((null a.rest) and (a.first.k = Nul(dim))) => a.first.c * b
((null b.rest) and (b.first.k = Nul(dim))) => b.first.c * a
z:% := 0
for tb in b repeat
for ta in a repeat
stuff:=Nalpha(ta.base,tb.base)
r:=first(stuff)*ta.coef*tb.coef
if r ~= 0 then z := z + [[rest(stuff)::EAB, r]]
z
coerce(r):% ==
r = 0 => 0
[ [Nul(dim), r] ]
coerce(m):% ==
m = 0 => 0
[ [Nul(dim), m::R] ]
characteristic == characteristic$R
generator(j) ==
-- j < 1 or j > dim => error "your subscript is out of range"
-- error will be generated by dum.j if out of range
dum:L I := [0 for i in 1..dim]
dum.j:=1
[[dum::EAB, 1::R]]
exp(li:(L I)) == [[li::EAB, 1]]
leadingBasisTerm a ==
[[a.first.k, 1]]
displayList:EAB -> O
displayList(x):O ==
le: L I := exponents(x)$EAB
reduce(_*,[(lVar.i)::O for i in 1..dim | one?(le.i)])$L(O)
makeTerm:(R,EAB) -> O
makeTerm(r,x) ==
-- we know that r ~= 0
x = Nul(dim)$EAB => r::O
one? r => displayList(x)
-- r = 0 => 0$I::O
-- x = Nul(dim)$EAB => r::O
r::O * displayList(x)
coerce(a):O ==
zero? a => 0$I::O
null rest(a @ Rep) =>
t := first(a @ Rep)
makeTerm(t.coef,t.base)
reduce(_+,[makeTerm(t.coef,t.base) for t in (a @ Rep)])$L(O)
@
\section{domain DERHAM DeRhamComplex}
<<domain DERHAM DeRhamComplex>>=
)abbrev domain DERHAM DeRhamComplex
++ Author: Larry A. Lambe
++ Date : 01/26/91.
++ Revised : May 19, 2013.
++
++ based on code from '89 (AntiSymmetric)
++
++ Needs: LeftAlgebra, ExtAlgBasis, FreeMod(Ring,OrderedSet)
++
++ Description: The deRham complex of Euclidean space, that is, the
++ class of differential forms of arbitary degree over a coefficient ring.
++ See Flanders, Harley, Differential Forms, With Applications to the Physical
++ Sciences, New York, Academic Press, 1963.
DeRhamComplex(CoefRing,listIndVar:List Symbol): Export == Implement where
CoefRing : Join(Ring, OrderedSet)
ASY ==> AntiSymm(R,listIndVar)
DIFRING ==> DifferentialRing
LALG ==> LeftAlgebra
FMR ==> FreeMod(R,EAB)
I ==> Integer
L ==> List
EAB ==> ExtAlgBasis -- these are exponents of basis elements in order
NNI ==> NonNegativeInteger
O ==> OutputForm
R ==> Expression(CoefRing)
Export == Join(LALG(R), RetractableTo(R),Functorial R) with
leadingCoefficient : % -> R
++ leadingCoefficient(df) returns the leading
++ coefficient of differential form df.
leadingBasisTerm : % -> %
++ leadingBasisTerm(df) returns the leading
++ basis term of differential form df.
reductum : % -> %
++ reductum(df), where df is a differential form,
++ returns df minus the leading
++ term of df if df has two or more terms, and
++ 0 otherwise.
coefficient : (%,%) -> R
++ coefficient(df,u), where df is a differential form,
++ returns the coefficient of df containing the basis term u
++ if such a term exists, and 0 otherwise.
generator : NNI -> %
++ generator(n) returns the nth basis term for a differential form.
homogeneous? : % -> Boolean
++ homogeneous?(df) tests if all of the terms of
++ differential form df have the same degree.
retractable? : % -> Boolean
++ retractable?(df) tests if differential form df is a 0-form,
++ i.e., if degree(df) = 0.
degree : % -> I
++ degree(df) returns the homogeneous degree of differential form df.
totalDifferential : R -> %
++ totalDifferential(x) returns the total differential
++ (gradient) form for element x.
exteriorDifferential : % -> %
++ exteriorDifferential(df) returns the exterior
++ derivative (gradient, curl, divergence, ...) of
++ the differential form df.
Implement == ASY add
Rep := ASY
dim := #listIndVar
totalDifferential(f) ==
divs:=[differentiate(f,listIndVar.i)*generator(i)$ASY for i in 1..dim]
reduce("+",divs)
termDiff : (R, %) -> %
termDiff(r,e) ==
totalDifferential(r) * e
exteriorDifferential(x) ==
x = 0 => 0
termDiff(leadingCoefficient(x)$Rep,leadingBasisTerm x) + exteriorDifferential(reductum x)
lv := [concat("d",string(liv))$String::Symbol for liv in listIndVar]
displayList:EAB -> O
displayList(x):O ==
le: L I := exponents(x)$EAB
reduce(_*,[(lv.i)::O for i in 1..dim | one?(le.i)])$L(O)
makeTerm:(R,EAB) -> O
makeTerm(r,x) ==
-- we know that r ~= 0
x = Nul(dim)$EAB => r::O
one? r => displayList(x)
r::O * displayList(x)
terms : % -> List Record(k: EAB, c: R)
terms(a) ==
-- it is the case that there are at least two terms in a
a pretend List Record(k: EAB, c: R)
coerce(a):O ==
a = 0$Rep => 0$I::O
ta := terms a
-- reductum(a) = 0$Rep => makeTerm(leadingCoefficient a, a.first.k)
null ta.rest => makeTerm(ta.first.c, ta.first.k)
reduce(_+,[makeTerm(t.c,t.k) for t in ta])$L(O)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--Copyright (C) 2007-2013, Gabriel Dos Reis.
--All rights reversed.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<category LALG LeftAlgebra>>
<<domain EAB ExtAlgBasis>>
<<domain ANTISYM AntiSymm>>
<<domain DERHAM DeRhamComplex>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|