1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra defintrf.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package DFINTTLS DefiniteIntegrationTools}
<<package DFINTTLS DefiniteIntegrationTools>>=
)abbrev package DFINTTLS DefiniteIntegrationTools
++ Tools for definite integration
++ Author: Manuel Bronstein
++ Date Created: 15 April 1992
++ Date Last Updated: 24 February 1993
++ Description:
++ \spadtype{DefiniteIntegrationTools} provides common tools used
++ by the definite integration of both rational and elementary functions.
DefiniteIntegrationTools(R, F): Exports == Implementation where
R : Join(GcdDomain, RetractableTo Integer,
LinearlyExplicitRingOver Integer)
F : Join(TranscendentalFunctionCategory,
AlgebraicallyClosedFunctionSpace R)
B ==> Boolean
Z ==> Integer
Q ==> Fraction Z
SE ==> Symbol
P ==> Polynomial R
RF ==> Fraction P
UP ==> SparseUnivariatePolynomial F
K ==> Kernel F
OFE ==> OrderedCompletion F
UPZ ==> SparseUnivariatePolynomial Z
UPQ ==> SparseUnivariatePolynomial Q
REC ==> Record(left:Q, right:Q)
REC2==> Record(endpoint:Q, dir:Z)
U ==> Union(fin:REC, halfinf:REC2, all:"all", failed:"failed")
IGNOR ==> "noPole"
Exports ==> with
ignore?: String -> B
++ ignore?(s) is true if s is the string that tells the integrator
++ to assume that the function has no pole in the integration interval.
computeInt: (K, F, OFE, OFE, B) -> Union(OFE, "failed")
++ computeInt(x, g, a, b, eval?) returns the integral of \spad{f} for x
++ between a and b, assuming that g is an indefinite integral of
++ \spad{f} and \spad{f} has no pole between a and b.
++ If \spad{eval?} is true, then \spad{g} can be evaluated safely
++ at \spad{a} and \spad{b}, provided that they are finite values.
++ Otherwise, limits must be computed.
checkForZero: (P, SE, OFE, OFE, B) -> Union(B, "failed")
++ checkForZero(p, x, a, b, incl?) is true if p has a zero for x between
++ a and b, false otherwise, "failed" if this cannot be determined.
++ Check for a and b inclusive if incl? is true, exclusive otherwise.
checkForZero: (UP, OFE, OFE, B) -> Union(B, "failed")
++ checkForZero(p, a, b, incl?) is true if p has a zero between
++ a and b, false otherwise, "failed" if this cannot be determined.
++ Check for a and b inclusive if incl? is true, exclusive otherwise.
Implementation ==> add
import RealZeroPackage UPZ
import InnerPolySign(F, UP)
import ElementaryFunctionSign(R, F)
import PowerSeriesLimitPackage(R, F)
import UnivariatePolynomialCommonDenominator(Z, Q, UPQ)
mkLogPos : F -> F
keeprec? : (Q, REC) -> B
negative : F -> Union(B, "failed")
mkKerPos : K -> Union(F, "positive")
posRoot : (UP, B) -> Union(B, "failed")
realRoot : UP -> Union(B, "failed")
var : UP -> Union(Z, "failed")
maprat : UP -> Union(UPZ, "failed")
variation : (UP, F) -> Union(Z, "failed")
infeval : (UP, OFE) -> Union(F, "failed")
checkHalfAx : (UP, F, Z, B) -> Union(B, "failed")
findLimit : (F, K, OFE, String, B) -> Union(OFE, "failed")
checkBudan : (UP, OFE, OFE, B) -> Union(B, "failed")
checkDeriv : (UP, OFE, OFE) -> Union(B, "failed")
sameSign : (UP, OFE, OFE) -> Union(B, "failed")
intrat : (OFE, OFE) -> U
findRealZero: (UPZ, U, B) -> List REC
variation(p, a) == var p(monomial(1, 1)$UP - a::UP)
keeprec?(a, rec) == (a > rec.right) or (a < rec.left)
checkHalfAx(p, a, d, incl?) ==
posRoot(p(d * (monomial(1, 1)$UP - a::UP)), incl?)
ignore? str ==
str = IGNOR => true
error "integrate: last argument must be 'noPole'"
computeInt(k, f, a, b, eval?) ==
is?(f, 'integral) => "failed"
if not eval? then f := mkLogPos f
((ib := findLimit(f, k, b, "left", eval?)) case "failed") or
((ia := findLimit(f, k, a, "right", eval?)) case "failed") => "failed"
infinite?(ia::OFE) and (ia::OFE = ib::OFE) => "failed"
ib::OFE - ia::OFE
findLimit(f, k, a, dir, eval?) ==
r := retractIfCan(a)@Union(F, "failed")
r case F =>
eval? => mkLogPos(eval(f, k, r::F))::OFE
(u := limit(f, equation(k::F, r::F), dir)) case OFE => u::OFE
"failed"
(u := limit(f, equation(k::F::OFE, a))) case OFE => u::OFE
"failed"
mkLogPos f ==
lk := empty()$List(K)
lv := empty()$List(F)
for k in kernels f | is?(k, 'log) repeat
if (v := mkKerPos k) case F then
lk := concat(k, lk)
lv := concat(v::F, lv)
eval(f, lk, lv)
mkKerPos k ==
(u := negative(f := first argument k)) case "failed" =>
log(f**2) / (2::F)
u::B => log(-f)
"positive"
negative f ==
(u := sign f) case "failed" => "failed"
negative?(u::Z)
checkForZero(p, x, a, b, incl?) ==
checkForZero(
map(#1::F, univariate(p, x))$SparseUnivariatePolynomialFunctions2(P, F),
a, b, incl?)
checkForZero(q, a, b, incl?) ==
ground? q => false
(d := maprat q) case UPZ and not((i := intrat(a, b)) case failed) =>
not empty? findRealZero(d::UPZ, i, incl?)
(u := checkBudan(q, a, b, incl?)) case "failed" =>
incl? => checkDeriv(q, a, b)
"failed"
u::B
maprat p ==
ans:UPQ := 0
while p ~= 0 repeat
(r := retractIfCan(c := leadingCoefficient p)@Union(Q,"failed"))
case "failed" => return "failed"
ans := ans + monomial(r::Q, degree p)
p := reductum p
map(numer,(splitDenominator ans).num
)$SparseUnivariatePolynomialFunctions2(Q, Z)
intrat(a, b) ==
(n := whatInfinity a) ~= 0 =>
(r := retractIfCan(b)@Union(F,"failed")) case "failed" => ["all"]
(q := retractIfCan(r::F)@Union(Q, "failed")) case "failed" =>
["failed"]
[[q::Q, n]]
(q := retractIfCan(retract(a)@F)@Union(Q,"failed")) case "failed"
=> ["failed"]
(n := whatInfinity b) ~= 0 => [[q::Q, n]]
(t := retractIfCan(retract(b)@F)@Union(Q,"failed")) case "failed"
=> ["failed"]
[[q::Q, t::Q]]
findRealZero(p, i, incl?) ==
-- Multiplicities of zeros are irrelevant, and in fact
-- this functions can handle only simple zeros.
p := squareFreePart p
i case fin =>
l := realZeros(p, r := i.fin)
incl? => l
select!(keeprec?(r.left, #1) and keeprec?(r.right, #1), l)
i case all => realZeros p
i case halfinf =>
empty?(l := realZeros p) => empty()
bounds:REC :=
i.halfinf.dir > 0 => [i.halfinf.endpoint, "max"/[t.right for t in l]]
["min"/[t.left for t in l], i.halfinf.endpoint]
l := [u::REC for t in l | (u := refine(p, t, bounds)) case REC]
incl? => l
select!(keeprec?(i.halfinf.endpoint, #1), l)
error "findRealZero: should not happpen"
checkBudan(p, a, b, incl?) ==
r := retractIfCan(b)@Union(F, "failed")
(n := whatInfinity a) ~= 0 =>
r case "failed" => realRoot p
checkHalfAx(p, r::F, n, incl?)
(za? := zero? p(aa := retract(a)@F)) and incl? => true
(n := whatInfinity b) ~= 0 => checkHalfAx(p, aa, n, incl?)
(zb? := zero? p(bb := r::F)) and incl? => true
(va := variation(p, aa)) case "failed" or
(vb := variation(p, bb)) case "failed" => "failed"
m:Z := 0
if za? then m := inc m
if zb? then m := inc m
odd?(v := va::Z - vb::Z) => -- p has an odd number of roots
incl? or even? m => true
one? v => false
"failed"
zero? v => false -- p has no roots
one? m => true -- p has an even number > 0 of roots
"failed"
checkDeriv(p, a, b) ==
(r := retractIfCan(p)@Union(F, "failed")) case F => zero?(r::F)
(s := sameSign(p, a, b)) case "failed" => "failed"
s::B => -- p has the same nonzero sign at a and b
(u := checkDeriv(differentiate p,a,b)) case "failed" => "failed"
u::B => "failed"
false
true
realRoot p ==
(b := posRoot(p, true)) case "failed" => "failed"
b::B => true
posRoot(p(p - monomial(1, 1)$UP), true)
sameSign(p, a, b) ==
(ea := infeval(p, a)) case "failed" => "failed"
(eb := infeval(p, b)) case "failed" => "failed"
(s := sign(ea::F * eb::F)) case "failed" => "failed"
s::Z > 0
-- returns true if p has a positive root. Include 0 is incl0? is true
posRoot(p, incl0?) ==
(z0? := zero?(coefficient(p, 0))) and incl0? => true
(v := var p) case "failed" => "failed"
odd?(v::Z) => -- p has an odd number of positive roots
incl0? or not(z0?) => true
one?(v::Z) => false
"failed"
zero?(v::Z) => false -- p has no positive roots
z0? => true -- p has an even number > 0 of positive roots
"failed"
infeval(p, a) ==
zero?(n := whatInfinity a) => p(retract(a)@F)
(u := signAround(p, n, sign)) case "failed" => "failed"
u::Z::F
var q ==
i:Z := 0
(lastCoef := negative leadingCoefficient q) case "failed" =>
"failed"
while ((q := reductum q) ~= 0) repeat
(next := negative leadingCoefficient q) case "failed" =>
return "failed"
if ((not(lastCoef::B)) and next::B) or
((not(next::B)) and lastCoef::B) then i := i + 1
lastCoef := next
i
@
\section{package DEFINTRF RationalFunctionDefiniteIntegration}
<<package DEFINTRF RationalFunctionDefiniteIntegration>>=
)abbrev package DEFINTRF RationalFunctionDefiniteIntegration
++ Definite integration of rational functions.
++ Author: Manuel Bronstein
++ Date Created: 2 October 1989
++ Date Last Updated: 2 February 1993
++ Description:
++ \spadtype{RationalFunctionDefiniteIntegration} provides functions to
++ compute definite integrals of rational functions.
RationalFunctionDefiniteIntegration(R): Exports == Implementation where
R : Join(EuclideanDomain, CharacteristicZero,
RetractableTo Integer, LinearlyExplicitRingOver Integer)
SE ==> Symbol
RF ==> Fraction Polynomial R
FE ==> Expression R
ORF ==> OrderedCompletion RF
OFE ==> OrderedCompletion FE
U ==> Union(f1:OFE, f2:List OFE, fail:"failed", pole:"potentialPole")
Exports ==> with
integrate: (RF, SegmentBinding OFE) -> U
++ integrate(f, x = a..b) returns the integral of
++ \spad{f(x)dx} from a to b.
++ Error: if f has a pole for x between a and b.
integrate: (RF, SegmentBinding OFE, String) -> U
++ integrate(f, x = a..b, "noPole") returns the
++ integral of \spad{f(x)dx} from a to b.
++ If it is not possible to check whether f has a pole for x
++ between a and b (because of parameters), then this function
++ will assume that f has no such pole.
++ Error: if f has a pole for x between a and b or
++ if the last argument is not "noPole".
-- the following two are contained in the above, but they are for the
-- interpreter... DO NOT COMMENT OUT UNTIL THE INTERPRETER IS BETTER!
integrate: (RF, SegmentBinding ORF) -> U
++ integrate(f, x = a..b) returns the integral of
++ \spad{f(x)dx} from a to b.
++ Error: if f has a pole for x between a and b.
integrate: (RF, SegmentBinding ORF, String) -> U
++ integrate(f, x = a..b, "noPole") returns the
++ integral of \spad{f(x)dx} from a to b.
++ If it is not possible to check whether f has a pole for x
++ between a and b (because of parameters), then this function
++ will assume that f has no such pole.
++ Error: if f has a pole for x between a and b or
++ if the last argument is not "noPole".
Implementation ==> add
import DefiniteIntegrationTools(R, FE)
import IntegrationResultRFToFunction(R)
import OrderedCompletionFunctions2(RF, FE)
int : (RF, SE, OFE, OFE, Boolean) -> U
nopole: (RF, SE, OFE, OFE) -> U
integrate(f:RF, s:SegmentBinding OFE) ==
int(f, variable s, lo segment s, hi segment s, false)
nopole(f, x, a, b) ==
k := kernel(x)@Kernel(FE)
(u := integrate(f, x)) case FE =>
(v := computeInt(k, u::FE, a, b, true)) case "failed" => ["failed"]
[v::OFE]
ans := empty()$List(OFE)
for g in u::List(FE) repeat
(v := computeInt(k, g, a, b, true)) case "failed" => return ["failed"]
ans := concat!(ans, [v::OFE])
[ans]
integrate(f:RF, s:SegmentBinding ORF) ==
int(f, variable s, map(#1::FE, lo segment s),
map(#1::FE, hi segment s), false)
integrate(f:RF, s:SegmentBinding ORF, str:String) ==
int(f, variable s, map(#1::FE, lo segment s),
map(#1::FE, hi segment s), ignore? str)
integrate(f:RF, s:SegmentBinding OFE, str:String) ==
int(f, variable s, lo segment s, hi segment s, ignore? str)
int(f, x, a, b, ignor?) ==
a = b => [0::OFE]
(z := checkForZero(denom f, x, a, b, true)) case "failed" =>
ignor? => nopole(f, x, a, b)
["potentialPole"]
z::Boolean => error "integrate: pole in path of integration"
nopole(f, x, a, b)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package DFINTTLS DefiniteIntegrationTools>>
<<package DEFINTRF RationalFunctionDefiniteIntegration>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|