1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra d03Package.spad}
\author{Brian Dupee}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package PDEPACK AnnaPartialDifferentialEquationPackage}
<<package PDEPACK AnnaPartialDifferentialEquationPackage>>=
)abbrev package PDEPACK AnnaPartialDifferentialEquationPackage
++ Author: Brian Dupee
++ Date Created: June 1996
++ Date Last Updated: December 1997
++ Basic Operations:
++ Description: AnnaPartialDifferentialEquationPackage is an uncompleted
++ package for the interface to NAG PDE routines. It has been realised that
++ a new approach to solving PDEs will need to be created.
++
LEDF ==> List Expression DoubleFloat
EDF ==> Expression DoubleFloat
LDF ==> List DoubleFloat
MDF ==> Matrix DoubleFloat
DF ==> DoubleFloat
LEF ==> List Expression Float
EF ==> Expression Float
MEF ==> Matrix Expression Float
LF ==> List Float
F ==> Float
LS ==> List Symbol
ST ==> String
LST ==> List String
INT ==> Integer
NNI ==> NonNegativeInteger
RT ==> RoutinesTable
PDEC ==> Record(start:DF, finish:DF, grid:NNI, boundaryType:INT,
dStart:MDF, dFinish:MDF)
PDEB ==> Record(pde:LEDF, constraints:List PDEC,
f:List LEDF, st:ST, tol:DF)
IFL ==> List(Record(ifail:INT,instruction:ST))
Entry ==> Record(chapter:ST, type:ST, domainName: ST,
defaultMin:F, measure:F, failList:IFL, explList:LST)
Measure ==> Record(measure:F,name:ST, explanations:LST)
AnnaPartialDifferentialEquationPackage(): with
solve:(NumericalPDEProblem) -> Result
++ solve(PDEProblem) is a top level ANNA function to solve numerically a system
++ of partial differential equations.
++
++ The method used to perform the numerical
++ process will be one of the routines contained in the NAG numerical
++ Library. The function predicts the likely most effective routine
++ by checking various attributes of the system of PDE's and calculating
++ a measure of compatibility of each routine to these attributes.
++
++ It then calls the resulting `best' routine.
++
++ ** At the moment, only Second Order Elliptic Partial Differential
++ Equations are solved **
solve:(NumericalPDEProblem,RT) -> Result
++ solve(PDEProblem,routines) is a top level ANNA function to solve numerically a system
++ of partial differential equations.
++
++ The method used to perform the numerical
++ process will be one of the routines contained in the NAG numerical
++ Library. The function predicts the likely most effective routine
++ by checking various attributes of the system of PDE's and calculating
++ a measure of compatibility of each routine to these attributes.
++
++ It then calls the resulting `best' routine.
++
++ ** At the moment, only Second Order Elliptic Partial Differential
++ Equations are solved **
solve:(F,F,F,F,NNI,NNI,LEF,List LEF,ST,DF) -> Result
++ solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol) is a top level
++ ANNA function to solve numerically a system of partial differential
++ equations. This is defined as a list of coefficients (\axiom{pde}),
++ a grid (\axiom{xmin}, \axiom{ymin}, \axiom{xmax}, \axiom{ymax},
++ \axiom{ngx}, \axiom{ngy}), the boundary values (\axiom{bounds}) and a
++ tolerance requirement (\axiom{tol}). There is also a parameter
++ (\axiom{st}) which should contain the value "elliptic" if the PDE is
++ known to be elliptic, or "unknown" if it is uncertain. This causes the
++ routine to check whether the PDE is elliptic.
++
++ The method used to perform the numerical
++ process will be one of the routines contained in the NAG numerical
++ Library. The function predicts the likely most effective routine
++ by checking various attributes of the system of PDE's and calculating
++ a measure of compatibility of each routine to these attributes.
++
++ It then calls the resulting `best' routine.
++
++ ** At the moment, only Second Order Elliptic Partial Differential
++ Equations are solved **
solve:(F,F,F,F,NNI,NNI,LEF,List LEF,ST) -> Result
++ solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st) is a top level
++ ANNA function to solve numerically a system of partial differential
++ equations. This is defined as a list of coefficients (\axiom{pde}),
++ a grid (\axiom{xmin}, \axiom{ymin}, \axiom{xmax}, \axiom{ymax},
++ \axiom{ngx}, \axiom{ngy}) and the boundary values (\axiom{bounds}).
++ A default value for tolerance is used. There is also a parameter
++ (\axiom{st}) which should contain the value "elliptic" if the PDE is
++ known to be elliptic, or "unknown" if it is uncertain. This causes the
++ routine to check whether the PDE is elliptic.
++
++ The method used to perform the numerical
++ process will be one of the routines contained in the NAG numerical
++ Library. The function predicts the likely most effective routine
++ by checking various attributes of the system of PDE's and calculating
++ a measure of compatibility of each routine to these attributes.
++
++ It then calls the resulting `best' routine.
++
++ ** At the moment, only Second Order Elliptic Partial Differential
++ Equations are solved **
measure:(NumericalPDEProblem) -> Measure
++ measure(prob) is a top level ANNA function for identifying the most
++ appropriate numerical routine from those in the routines table
++ provided for solving the numerical PDE
++ problem defined by \axiom{prob}.
++
++ It calls each \axiom{domain} of \axiom{category}
++ \axiomType{PartialDifferentialEquationsSolverCategory} in turn to
++ calculate all measures and returns the best i.e. the name of
++ the most appropriate domain and any other relevant information.
++ It predicts the likely most effective NAG numerical
++ Library routine to solve the input set of PDEs
++ by checking various attributes of the system of PDEs and calculating
++ a measure of compatibility of each routine to these attributes.
measure:(NumericalPDEProblem,RT) -> Measure
++ measure(prob,R) is a top level ANNA function for identifying the most
++ appropriate numerical routine from those in the routines table
++ provided for solving the numerical PDE
++ problem defined by \axiom{prob}.
++
++ It calls each \axiom{domain} listed in \axiom{R} of \axiom{category}
++ \axiomType{PartialDifferentialEquationsSolverCategory} in turn to
++ calculate all measures and returns the best i.e. the name of
++ the most appropriate domain and any other relevant information.
++ It predicts the likely most effective NAG numerical
++ Library routine to solve the input set of PDEs
++ by checking various attributes of the system of PDEs and calculating
++ a measure of compatibility of each routine to these attributes.
== add
import PDEB, d03AgentsPackage, ExpertSystemToolsPackage, NumericalPDEProblem
zeroMeasure:Measure -> Result
measureSpecific:(ST,RT,PDEB) -> Record(measure:F,explanations:ST)
solveSpecific:(PDEB,ST) -> Result
changeName:(Result,ST) -> Result
recoverAfterFail:(PDEB,RT,Measure,Integer,Result) -> Record(a:Result,b:Measure)
zeroMeasure(m:Measure):Result ==
a := coerce(0$F)$AnyFunctions1(F)
text := coerce("No available routine appears appropriate")$AnyFunctions1(ST)
r := construct([[result@Symbol,a],[method@Symbol,text]])$Result
concat(measure2Result m,r)$ExpertSystemToolsPackage
measureSpecific(name:ST,R:RT,p:PDEB):Record(measure:F,explanations:ST) ==
name = "d03eefAnnaType" => measure(R,p)$d03eefAnnaType
--name = "d03fafAnnaType" => measure(R,p)$d03fafAnnaType
error("measureSpecific","invalid type name: " name)$ErrorFunctions
measure(P:NumericalPDEProblem,R:RT):Measure ==
p:PDEB := retract(P)$NumericalPDEProblem
sofar := 0$F
best := "none" :: ST
routs := copy R
routs := selectPDERoutines(routs)$RT
empty?(routs)$RT =>
error("measure", "no routines found")$ErrorFunctions
rout := inspect(routs)$RT
e := retract(rout.entry)$AnyFunctions1(Entry)
meth := empty()$LST
for i in 1..# routs repeat
rout := extract!(routs)$RT
e := retract(rout.entry)$AnyFunctions1(Entry)
n := e.domainName
if e.defaultMin > sofar then
m := measureSpecific(n,R,p)
if m.measure > sofar then
sofar := m.measure
best := n
str:LST := [string(rout.key)$Symbol "measure: "
outputMeasure(m.measure)$ExpertSystemToolsPackage " - "
m.explanations]
else
str := [string(rout.key)$Symbol " is no better than other routines"]
meth := append(meth,str)$LST
[sofar,best,meth]
measure(P:NumericalPDEProblem):Measure == measure(P,routines()$RT)
solveSpecific(p:PDEB,n:ST):Result ==
n = "d03eefAnnaType" => PDESolve(p)$d03eefAnnaType
--n = "d03fafAnnaType" => PDESolve(p)$d03fafAnnaType
error("solveSpecific","invalid type name: " n)$ErrorFunctions
changeName(ans:Result,name:ST):Result ==
sy:Symbol := coerce(name "Answer")$Symbol
anyAns:Any := coerce(ans)$AnyFunctions1(Result)
construct([[sy,anyAns]])$Result
recoverAfterFail(p:PDEB,routs:RT,m:Measure,iint:Integer,r:Result):
Record(a:Result,b:Measure) ==
while positive?(iint) repeat
routineName := m.name
s := recoverAfterFail(routs,routineName(1..6),iint)$RT
s case "failed" => iint := 0
(s = "no action")@Boolean => iint := 0
fl := coerce(s)$AnyFunctions1(ST)
flrec:Record(key:Symbol,entry:Any):=[failure@Symbol,fl]
m2 := measure(p::NumericalPDEProblem,routs)
zero?(m2.measure) => iint := 0
r2:Result := solveSpecific(p,m2.name)
m := m2
insert!(flrec,r2)$Result
r := concat(r2,changeName(r,routineName))$ExpertSystemToolsPackage
iany := search(ifail@Symbol,r2)$Result
iany case "failed" => iint := 0
iint := retract(iany)$AnyFunctions1(Integer)
[r,m]
solve(P:NumericalPDEProblem,t:RT):Result ==
routs := copy(t)$RT
m := measure(P,routs)
p:PDEB := retract(P)$NumericalPDEProblem
zero?(m.measure) => zeroMeasure m
r := solveSpecific(p,n := m.name)
iany := search(ifail@Symbol,r)$Result
iint := 0$Integer
if (iany case Any) then
iint := retract(iany)$AnyFunctions1(Integer)
if positive?(iint) then
tu:Record(a:Result,b:Measure) := recoverAfterFail(p,routs,m,iint,r)
r := tu.a
m := tu.b
expl := getExplanations(routs,n(1..6))$RoutinesTable
expla := coerce(expl)$AnyFunctions1(LST)
explaa:Record(key:Symbol,entry:Any) := ["explanations"::Symbol,expla]
r := concat(construct([explaa]),r)
concat(measure2Result m,r)$ExpertSystemToolsPackage
solve(P:NumericalPDEProblem):Result == solve(P,routines()$RT)
solve(xmi:F,xma:F,ymi:F,yma:F,nx:NNI,ny:NNI,pe:LEF,bo:List
LEF,s:ST,to:DF):Result ==
cx:PDEC := [f2df xmi, f2df xma, nx, 1, empty()$MDF, empty()$MDF]
cy:PDEC := [f2df ymi, f2df yma, ny, 1, empty()$MDF, empty()$MDF]
p:PDEB := [[ef2edf e for e in pe],[cx,cy],
[[ef2edf u for u in w] for w in bo],s,to]
solve(p::NumericalPDEProblem,routines()$RT)
solve(xmi:F,xma:F,ymi:F,yma:F,nx:NNI,ny:NNI,pe:LEF,bo:List
LEF,s:ST):Result ==
solve(xmi,xma,ymi,yma,nx,ny,pe,bo,s,0.0001::DF)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package PDEPACK AnnaPartialDifferentialEquationPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|