aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/crfp.spad.pamphlet
blob: 9f61ed5d2e60a7ea71a899bc6e2ecc5fb40a7311 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra crfp.spad}
\author{Johannes Grabmeier}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package CRFP ComplexRootFindingPackage}
<<package CRFP ComplexRootFindingPackage>>=
)abbrev package CRFP ComplexRootFindingPackage
++ Author: J. Grabmeier
++ Date Created: 31 January 1991
++ Date Last Updated: 12 April 1991
++ Basic Operations: factor, pleskenSplit
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords: complex zeros, roots
++ References: J. Grabmeier: On Plesken's root finding algorithm,
++  in preparation
++  A. Schoenhage: The fundamental theorem of algebra in terms of computational
++  complexity, preliminary report, Univ. Tuebingen, 1982
++ Description:
++  \spadtype{ComplexRootFindingPackage} provides functions to
++  find all roots of a polynomial p over the complex number by
++  using Plesken's idea to calculate in the polynomial ring
++  modulo f and employing the Chinese Remainder Theorem.
++  In this first version, the precision (see \spadfunFrom{digits}{Float})
++  is not increased when this is necessary to
++  avoid rounding errors. Hence it is the user's responsibility to
++  increase the precision if necessary.
++  Note also, if this package is called with e.g. \spadtype{Fraction Integer},
++  the precise calculations could require a lot of time.
++  Also note that evaluating the zeros is not necessarily a good check
++  whether the result is correct: already evaluation can cause
++  rounding errors.
ComplexRootFindingPackage(R, UP): public == private where
   -- R   : Join(Field, OrderedRing, CharacteristicZero)
   -- Float not in CharacteristicZero !|
   R   : Join(Field, OrderedRing)
   UP  : UnivariatePolynomialCategory Complex R

   C      ==> Complex R
   FR     ==> Factored
   I      ==> Integer
   L      ==> List
   FAE    ==> Record(factors : L UP, error : R)
   NNI    ==> NonNegativeInteger
   OF     ==> OutputForm
   ICF    ==> IntegerCombinatoricFunctions(I)

   public ==> with
     complexZeros : UP -> L C
       ++ complexZeros(p) tries to determine all complex zeros
       ++ of the polynomial p with accuracy given by the package
       ++ constant {\em globalEps} which you may change by
       ++ {\em setErrorBound}.
     complexZeros : (UP, R) -> L C
       ++ complexZeros(p, eps) tries to determine all complex zeros
       ++ of the polynomial p with accuracy given by {\em eps}.
     divisorCascade : (UP,UP, Boolean) -> L FAE
       ++ divisorCascade(p,tp) assumes that degree of polynomial {\em tp}
       ++ is smaller than degree of polynomial p, both monic.
       ++ A sequence of divisions are calculated
       ++ using the remainder, made monic, as divisor
       ++ for the the next division. The result contains also the error of the
       ++ factorizations, i.e. the norm of the remainder polynomial.
       ++ If {\em info} is {\em true}, then information messages are issued.
     divisorCascade : (UP,UP) -> L FAE
       ++ divisorCascade(p,tp) assumes that degree of polynomial {\em tp}
       ++ is smaller than degree of polynomial p, both monic.
       ++ A sequence of divisions is calculated
       ++ using the remainder, made monic, as divisor
       ++ for the  the next division. The result contains also the error of the
       ++ factorizations, i.e. the norm of the remainder polynomial.
     factor: (UP,R,Boolean)  ->  FR UP
       ++ factor(p, eps, info) tries to factor p into linear factors
       ++ with error atmost {\em eps}. An overall error bound
       ++ {\em eps0} is determined and iterated tree-like calls
       ++ to {\em pleskenSplit} are used to get the factorization.
       ++ If {\em info} is {\em true}, then information messages are given.
     factor: (UP,R)  ->  FR UP
       ++ factor(p, eps) tries to factor p into linear factors
       ++ with error atmost {\em eps}. An overall error bound
       ++ {\em eps0} is determined and iterated tree-like calls
       ++ to {\em pleskenSplit} are used to get the factorization.
     factor: UP  ->  FR UP
       ++ factor(p) tries to factor p into linear factors
       ++ with error atmost {\em globalEps}, the internal error bound,
       ++ which can be set by {\em setErrorBound}. An overall error bound
       ++ {\em eps0} is determined and iterated tree-like calls
       ++ to {\em pleskenSplit} are used to get the factorization.
     graeffe : UP -> UP
       ++ graeffe p determines q such that \spad{q(-z**2) = p(z)*p(-z)}.
       ++ Note that the roots of q are the squares of the roots of p.
     norm : UP -> R
       ++ norm(p) determines sum of absolute values of coefficients
       ++ Note: this function depends on \spadfunFrom{abs}{Complex}.
     pleskenSplit: (UP, R, Boolean)  ->  FR UP
       ++ pleskenSplit(poly,eps,info) determines a start polynomial {\em start}
       ++ by using "startPolynomial then it increases the exponent
       ++ n of {\em start ** n mod poly} to get an approximate factor of
       ++ {\em poly}, in general of degree "degree poly -1". Then a divisor
       ++ cascade is calculated and the best splitting is chosen, as soon
       ++ as the error is small enough.
       --++ In a later version we plan
       --++ to use the whole information to get a split into more than 2
       --++ factors.
       ++ If {\em info} is {\em true}, then information messages are issued.
     pleskenSplit: (UP, R)  ->  FR UP
       ++ pleskenSplit(poly, eps)  determines a start polynomial {\em start}\
       ++ by using "startPolynomial then it increases the exponent
       ++ n of {\em start ** n mod poly} to get an approximate factor of
       ++ {\em poly}, in general of degree "degree poly -1". Then a divisor
       ++ cascade is calculated and the best splitting is chosen, as soon
       ++ as the error is small enough.
       --++ In a later version we plan
       --++ to use the whole information to get a split into more than 2
       --++ factors.
     reciprocalPolynomial: UP  -> UP
       ++ reciprocalPolynomial(p) calulates a polynomial which has exactly
       ++ the inverses of the non-zero roots of p as roots, and the same
       ++ number of 0-roots.
     rootRadius: (UP,R) -> R
       ++ rootRadius(p,errQuot) calculates the root radius of p with a
       ++ maximal error quotient of {\em errQuot}.
     rootRadius: UP -> R
       ++ rootRadius(p) calculates the root radius of p with a
       ++ maximal error quotient of {\em 1+globalEps}, where
       ++ {\em globalEps} is the internal error bound, which can be
       ++ set by {\em setErrorBound}.
     schwerpunkt: UP ->  C
       ++ schwerpunkt(p) determines the 'Schwerpunkt' of the roots of the
       ++ polynomial p of degree n, i.e. the center of gravity, which is
       ++ {\em coeffient of \spad{x**(n-1)}} divided by
       ++ {\em n times coefficient of \spad{x**n}}.
     setErrorBound : R -> R
       ++ setErrorBound(eps) changes the internal error bound,
       -- by default being {\em 10 ** (-20)} to eps, if R is
       ++ by default being {\em 10 ** (-3)} to eps, if R is
       ++ a member in the category \spadtype{QuotientFieldCategory Integer}.
       ++ The internal {\em globalDigits} is set to
       -- {\em ceiling(1/r)**2*10} being {\em 10**41} by default.
       ++ {\em ceiling(1/r)**2*10} being {\em 10**7} by default.
     startPolynomial: UP  -> Record(start: UP, factors: FR UP)
       ++ startPolynomial(p) uses the ideas of Schoenhage's
       ++ variant of Graeffe's method to construct circles which separate
       ++ roots to get a good start polynomial, i.e. one whose
       ++ image under the Chinese Remainder Isomorphism has both entries
       ++ of norm smaller and greater or equal to 1. In case the
       ++ roots are found during internal calculations.
       ++ The corresponding factors
       ++ are in {\em factors} which are otherwise 1.

   private ==> add


     Rep := ModMonic(C, UP)

     -- constants
     r : R
     --globalDigits : I := 10 ** 41
     globalDigits : I := 10 ** 7
     globalEps : R :=
       --a : R := (1000000000000000000000 :: I) :: R
       a : R := (1000 :: I) :: R
       1/a
     emptyLine : OF := "  "
     dashes : OF := center "---------------------------------------------------"
     dots : OF :=   center "..................................................."
     one : R := 1$R
     two : R := 2 * one
     ten : R := 10 * one
     eleven : R := 11 * one
     weakEps := eleven/ten
     --invLog2 : R := 1/log10 (2*one)

     -- signatures of local functions

     absC : C -> R
       --
     absR : R -> R
       --
     calculateScale : UP -> R
       --
     makeMonic : UP -> UP
       -- 'makeMonic p' divides 'p' by the leading coefficient,
       -- to guarantee new leading coefficient to be 1$R  we cannot
       -- simply divide the leading monomial by the leading coefficient
       -- because of possible rounding errors
     min: (FAE, FAE) -> FAE
       -- takes factorization with smaller error
     nthRoot : (R, NNI) -> R
       -- nthRoot(r,n) determines an approximation to the n-th
       -- root of r, if \spadtype{R} has {\em ?**?: (R,Fraction Integer)->R}
       -- we use this, otherwise we use {\em approxNthRoot} via
       -- \spadtype{Integer}
     shift: (UP,C) ->  UP
       -- shift(p,c) changes p(x) into p(x+c), thereby modifying the
       -- roots u_j of p to the roots (u_j - c)  of shift(p,c)
     scale: (UP,C) -> UP
       -- scale(p,c) changes p(x) into p(cx), thereby modifying the
       -- roots u_j of p to the roots ((1/c) u_j)  of scale(p,c)


     -- implementation of exported functions


     complexZeros(p,eps) ==
       --r1 : R := rootRadius(p,weakEps)
       --eps0 : R = r1 * nthRoot(eps, degree p)
       -- right now we are content with
       eps0 : R := eps/(ten ** degree p)
       facs : FR UP := factor(p,eps0)
       [-coefficient(linfac.factor,0) for linfac in factors facs]

     complexZeros p == complexZeros(p,globalEps)
     setErrorBound r ==
       r <= 0 => error "setErrorBound: need error bound greater 0"
       globalEps := r
       if R has QuotientFieldCategory Integer then
         rd : Integer := ceiling(1/r)
         globalDigits := rd * rd * 10
         lof : List OF := _
           ["setErrorBound: internal digits set to",globalDigits::OF]
         print hconcat lof
       messagePrint  "setErrorBound: internal error bound set to"
       globalEps

     pleskenSplit(poly,eps,info) ==
       p := makeMonic poly
       fp : FR UP
       if not zero? (md := minimumDegree p) then
         fp : FR UP := irreducibleFactor(monomial(1,1)$UP,md)$(FR UP)
         p := p quo monomial(1,md)$UP
       sP : Record(start: UP, factors: FR UP) := startPolynomial p
       fp : FR UP := sP.factors
       if not one? fp then
         qr: Record(quotient: UP, remainder: UP):= divide(p,makeMonic expand fp)
         p := qr.quotient
       st := sP.start
       zero? degree st => fp
         -- we calculate in ModMonic(C, UP),
         -- next line defines the polynomial, which is used for reducing
       setPoly p
       nm : R := eps
       split : FAE
       sR : Rep := st :: Rep
       psR : Rep := sR ** (degree poly)

       notFoundSplit : Boolean := true
       while notFoundSplit repeat
       --  if info then
       --    lof : L OF := ["not successfull, new exponent:", nn::OF]
       --    print hconcat lof
         psR := psR * psR * sR   -- exponent (2*d +1)
         -- be careful, too large exponent results in rounding errors
         -- tp is the first approximation of a divisor of poly:
         tp : UP  := lift psR
         zero? degree tp  =>
           if info then print "we leave as we got constant factor"
           nilFactor(poly,1)$(FR UP)
         -- this was the case where we don't find a non-trivial factorization
         -- we refine tp by repeated polynomial division and hope that
         -- the norm of the remainder gets small  from time to time
         splits : L FAE :=  divisorCascade(p, makeMonic tp, info)
         split := reduce(min,splits)
         notFoundSplit := (eps <=  split.error)

       for fac in split.factors repeat
         fp :=
           one? degree fac => fp * nilFactor(fac,1)$(FR UP)
           fp * irreducibleFactor(fac,1)$(FR UP)
       fp

     startPolynomial p == -- assume minimumDegree is 0
       --print (p :: OF)
       fp : FR UP := 1
       one? degree p =>
         p := makeMonic p
         [p,irreducibleFactor(p,1)]
       startPoly : UP := monomial(1,1)$UP
       eps : R := weakEps   -- 10 per cent errors allowed
       r1 : R := rootRadius(p, eps)
       rd : R := 1/rootRadius(reciprocalPolynomial p, eps)
       (r1 > (2::R)) and (rd < 1/(2::R)) => [startPoly,fp] -- unit circle splitting!
       -- otherwise the norms of the roots are too closed so we
       -- take the center of gravity as new origin:
       u  : C := schwerpunkt p
       startPoly := startPoly-monomial(u,0)
       p := shift(p,-u)
       -- determine new rootRadius:
       r1 : R := rootRadius(p, eps)
       startPoly := startPoly/(r1::C)
       -- use one of the 4 points r1*zeta, where zeta is a 4th root of unity
       -- as new origin, this could be changed to an arbitrary list
       -- of elements of norm 1.
       listOfCenters : L C := [complex(r1,0), complex(0,r1), _
         complex(-r1,0), complex(0,-r1)]
       lp   : L UP := [shift(p,v) for v in listOfCenters]
       -- next we check if one of these centers is a root
       centerIsRoot : Boolean := false
       for i in 1..maxIndex lp repeat
         if positive? (mD := minimumDegree lp.i) then
           pp : UP := monomial(1,1)-monomial(listOfCenters.i-u,0)
           centerIsRoot := true
           fp := fp * irreducibleFactor(pp,mD)
       centerIsRoot =>
         p := shift(p,u) quo expand fp
         --print (p::OF)
         zero? degree p => [p,fp]
         sP:= startPolynomial(p)
         [sP.start,fp]
       -- choose the best one w.r.t. maximal quotient of norm of largest
       -- root and norm of smallest root
       lpr1 : L R := [rootRadius(q,eps) for  q in lp]
       lprd : L R := [1/rootRadius(reciprocalPolynomial q,eps) for  q in lp]
       -- later we should check here of an rd is smaller than globalEps
       lq : L R := []
       for i in 1..maxIndex lpr1 repeat
         lq := cons(lpr1.i/lprd.i, lq)
       --lq : L R := [(l/s)::R for l in lpr1 for s in lprd])
       lq := reverse lq
       po := position(reduce(max,lq),lq)
       --p := lp.po
       --lrr : L R := [rootRadius(p,i,1+eps) for i in 2..(degree(p)-1)]
       --lrr := concat(concat(lpr1.po,lrr),lprd.po)
       --lu : L R := [(lrr.i + lrr.(i+1))/2 for i in 1..(maxIndex(lrr)-1)]
       [startPoly - monomial(listOfCenters.po,0),fp]

     norm p ==
      -- reduce(_+$R,map(absC,coefficients p))
      nm : R := 0
      for c in  coefficients p repeat
        nm := nm + absC c
      nm

     pleskenSplit(poly,eps) == pleskenSplit(poly,eps,false)

     graeffe p ==
       -- If  p = ao x**n + a1 x**(n-1) + ... + a<n-1> x + an
       -- and q = bo x**n + b1 x**(n-1) + ... + b<n-1> x + bn
       -- are such that q(-x**2) = p(x)p(-x), then
       -- bk := ak**2 + 2 * ((-1) * a<k-1>*a<k+1> + ... +
       --                    (-1)**l * a<l>*a<l>) where l = min(k, n-k).
       -- graeffe(p) constructs q using these identities.
       n   : NNI  := degree p
       aForth : L C := []
       for k in 0..n repeat  --  aForth = [a0, a1, ..., a<n-1>, an]
         aForth := cons(coefficient(p, k::NNI), aForth)
       aBack  : L C := [] --  after k steps
                             --  aBack = [ak, a<k-1>, ..., a1, a0]
       gp : UP := 0$UP
       for k in 0..n repeat
         ak : C := first aForth
         aForth := rest aForth
         aForthCopy : L C := aForth  -- we iterate over aForth and
         aBackCopy  : L C := aBack   -- aBack but do not want to
                                      -- destroy them
         sum        :   C := 0
         const : I  := -1  --  after i steps const = (-1)**i
         for aminus in aBack for aplus in aForth repeat
           -- after i steps aminus = a<k-i> and aplus = a<k+i>
           sum := sum + const * aminus * aplus
           aForthCopy := rest aForthCopy
           aBackCopy  := rest aBackCopy
           const := -const
         gp := gp + monomial(ak*ak + 2 * sum, (n-k)::NNI)
         aBack := cons(ak, aBack)
       gp



     rootRadius(p,errorQuotient) ==
       errorQuotient <= 1$R =>
         error "rootRadius: second Parameter must be greater than 1"
       pp   : UP  := p
       rho  : R   := calculateScale makeMonic pp
       rR   : R   := rho
       pp := makeMonic scale(pp,complex(rho,0$R))
       expo : NNI := 1
       d    : NNI := degree p
       currentError:  R   := nthRoot(2::R, 2)
       currentError     := d*20*currentError
       while nthRoot(currentError, expo) >= errorQuotient repeat
         -- if info then print (expo :: OF)
         pp := graeffe pp
         rho := calculateScale pp
         expo := 2 * expo
         rR := nthRoot(rho, expo) * rR
         pp :=  makeMonic scale(pp,complex(rho,0$R))
       rR

     rootRadius(p) == rootRadius(p, 1+globalEps)

     schwerpunkt p ==
       zero? p => 0$C
       zero? (d := degree p) => error _
       "schwerpunkt: non-zero const. polynomial has no roots and no schwerpunkt"
       -- coeffient of x**d and x**(d-1)
       lC : C :=  coefficient(p,d)  -- ~= 0
       nC : C :=  coefficient(p,(d-1) pretend NNI)
       (denom := recip ((d::I::C)*lC)) case "failed" => error  "schwerpunkt: _
         degree * leadingCoefficient not invertible in ring of coefficients"
       - (nC*(denom::C))

     reciprocalPolynomial p ==
       zero? p => 0
       d : NNI := degree p
       md : NNI := d+minimumDegree p
       lm : L UP := [monomial(coefficient(p,i),(md-i) :: NNI) for i in 0..d]
       sol := reduce(_+, lm)

     divisorCascade(p, tp, info) ==
       lfae : L FAE :=  nil()
       for i in 1..degree tp while positive? degree tp  repeat
         -- USE monicDivide !!!
         qr  : Record(quotient: UP, remainder: UP)  :=  divide(p,tp)
         factor1 : UP := tp
         factor2 : UP := makeMonic qr.quotient
         -- refinement of tp:
         tp := qr.remainder
         nm : R := norm tp
         listOfFactors  : L UP := cons(factor2,nil()$(L UP))
         listOfFactors := cons(factor1,listOfFactors)
         lfae := cons( [listOfFactors,nm], lfae)
         if info then
           --lof : L OF :=  [i :: OF,"-th division:"::OF]
           --print center box hconcat lof
           print emptyLine
           lof : L OF :=  ["error polynomial has degree " ::OF,_
             (degree tp)::OF, " and norm " :: OF, nm :: OF]
           print center hconcat lof
           lof : L OF := ["degrees of factors:" ::OF,_
             (degree factor1)::OF,"  ", (degree factor2)::OF]
           print center hconcat lof
       if info then print emptyLine
       reverse lfae

     divisorCascade(p, tp) == divisorCascade(p, tp, false)

     factor(poly,eps) == factor(poly,eps,false)
     factor(p) == factor(p, globalEps)

     factor(poly,eps,info) ==
       result : FR  UP := coerce monomial(leadingCoefficient poly,0)
       d : NNI := degree poly
       --should be
       --den : R := (d::I)::R * two**(d::Integer) * norm poly
       --eps0 : R := eps / den
       -- for now only
       eps0 : R := eps / (ten*ten)
       one? d  => irreducibleFactor(poly,1)$(FR UP)
       listOfFactors : L Record(factor: UP,exponent: I) :=_
         list [makeMonic poly,1]
       if info then
         lof : L OF := [dashes,dots,"list of Factors:",dots,listOfFactors::OF, _
           dashes, "list of Linear Factors:", dots, result::OF, _
           dots,dashes]
         print vconcat lof
       while not null listOfFactors  repeat
         p : UP := (first listOfFactors).factor
         exponentOfp : I := (first listOfFactors).exponent
         listOfFactors := rest listOfFactors
         if info then
           lof : L OF := ["just now we try to split the polynomial:",p::OF]
           print vconcat lof
         split : FR UP  := pleskenSplit(p, eps0, info)
         one? numberOfFactors split =>
           -- in a later version we will change error bound and
           -- accuracy here to deal this case as well
           lof : L OF := ["factor: couldn't split factor",_
             center(p :: OF), "with required error bound"]
           print vconcat lof
           result := result * nilFactor(p, exponentOfp)
         -- now we got 2 good factors of p, we drop p and continue
         -- with the factors, if they are not linear, or put a
         -- linear factor to the result
         for rec in factors(split)$(FR UP) repeat
           newFactor : UP := rec.factor
           expOfFactor := exponentOfp * rec.exponent
           one? degree newFactor =>
             result := result * nilFactor(newFactor,expOfFactor)
           listOfFactors:=cons([newFactor,expOfFactor],_
             listOfFactors)
       result

     -- implementation of local functions

     absC c == nthRoot(norm(c)$C,2)
     absR r ==
       negative? r => -r
       r
     min(fae1,fae2) ==
       fae2.error <  fae1.error => fae2
       fae1
     calculateScale p ==
       d  := degree p
       maxi :R := 0
       for j in 1..d for cof in rest coefficients p repeat
         -- here we need abs: R -> R
         rc :  R := absR real cof
         ic :  R := absR imag cof
         locmax: R := max(rc,ic)
         maxi := max( nthRoot( locmax/(binomial(d,j)$ICF::R), j), maxi)
       -- Maybe I should use some type of logarithm for the following:
       maxi = 0$R => error("Internal Error: scale cannot be 0")
       rho  :R := one
       rho < maxi =>
         while rho < maxi repeat rho := ten * rho
         rho / ten
       while maxi < rho repeat rho := rho / ten
       rho = 0 => one
       rho
     makeMonic p  ==
       p = 0 => p
       monomial(1,degree p)$UP + (reductum p)/(leadingCoefficient p)

     scale(p, c) ==
       -- eval(p,cx) is missing !!
       eq : Equation UP := equation(monomial(1,1), monomial(c,1))
       eval(p,eq)
       -- improvement?: direct calculation of the new coefficients

     shift(p,c) ==
       rhs : UP := monomial(1,1) + monomial(c,0)
       eq : Equation UP := equation(monomial(1,1), rhs)
       eval(p,eq)
       -- improvement?: direct calculation of the new coefficients

     nthRoot(r,n) ==
       R has RealNumberSystem =>  r ** (1/n)
       R has QuotientFieldCategory Integer =>
         den : I := approxNthRoot(globalDigits * denom r ,n)$IntegerRoots(I)
         num : I := approxNthRoot(globalDigits * numer r ,n)$IntegerRoots(I)
         num/den
       -- the following doesn't compile
       --R has coerce: % -> Fraction Integer =>
       --  q : Fraction Integer := coerce(r)@Fraction(Integer)
       --  den : I := approxNthRoot(globalDigits * denom q ,n)$IntegerRoots(I)
       --  num : I := approxNthRoot(globalDigits * numer q ,n)$IntegerRoots(I)
       --  num/den
       r -- this is nonsense, perhaps a Newton iteration for x**n-r here

)fin
     -- for late use:

     graeffe2 p ==
       -- substitute x by -x :
       eq : Equation UP := equation(monomial(1,1), monomial(-1$C,1))
       pp : UP := p*eval(p,eq)
       gp : UP :=  0$UP
       while pp ~= 0 repeat
          i:NNI := (degree pp) quo (2::NNI)
          coef:C:=
            even? i => leadingCoefficient pp
            - leadingCoefficient pp
          gp    := gp + monomial(coef,i)
          pp    := reductum pp
       gp
     shift2(p,c) ==
       d := degree p
       cc : C := 1
       coef := List C := [cc := c * cc for i in 1..d]
       coef := cons(1,coef)
       coef := [coefficient(p,i)*coef.(1+i) for i in 0..d]
       res : UP := 0
       for j in 0..d repeat
         cc := 0
         for i in j..d repeat
           cc := cc + coef.i * (binomial(i,j)$ICF :: R)
         res := res + monomial(cc,j)$UP
       res
     scale2(p,c) ==
       d := degree p
       cc : C := 1
       coef := List C := [cc := c * cc for i in 1..d]
       coef := cons(1,coef)
       coef := [coefficient(p,i)*coef.(i+1) for i in 0..d]
       res : UP := 0
       for i in 0..d repeat  res := res + monomial(coef.(i+1),i)$UP
       res
     scale2: (UP,C) -> UP
     shift2: (UP,C) ->  UP
     graeffe2 : UP -> UP
       ++ graeffe2 p determines q such that \spad{q(-z**2) = p(z)*p(-z)}.
       ++ Note that the roots of q are the squares of the roots of p.

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package CRFP ComplexRootFindingPackage>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}