1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra contfrac.spad}
\author{Stephen M. Watt, Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain CONTFRAC ContinuedFraction}
<<domain CONTFRAC ContinuedFraction>>=
)abbrev domain CONTFRAC ContinuedFraction
++ Author: Stephen M. Watt
++ Date Created: January 1987
++ Change History:
++ 11 April 1990
++ 7 October 1991 -- SMW: Treat whole part specially. Added comments.
++ Basic Operations:
++ (Field), (Algebra),
++ approximants, complete, continuedFraction, convergents, denominators,
++ extend, numerators, partialDenominators, partialNumerators,
++ partialQuotients, reducedContinuedFraction, reducedForm, wholePart
++ Related Constructors:
++ Also See: Fraction
++ AMS Classifications: 11A55 11J70 11K50 11Y65 30B70 40A15
++ Keywords: continued fraction, convergent
++ References:
++ Description: \spadtype{ContinuedFraction} implements general
++ continued fractions. This version is not restricted to simple,
++ finite fractions and uses the \spadtype{Stream} as a
++ representation. The arithmetic functions assume that the
++ approximants alternate below/above the convergence point.
++ This is enforced by ensuring the partial numerators and partial
++ denominators are greater than 0 in the Euclidean domain view of \spad{R}
++ (i.e. \spad{sizeLess?(0, x)}).
ContinuedFraction(R): Exports == Implementation where
R : EuclideanDomain
Q ==> Fraction R
MT ==> MoebiusTransform Q
OUT ==> OutputForm
Exports ==> Join(Algebra R,Algebra Q,Field) with
continuedFraction: Q -> %
++ continuedFraction(r) converts the fraction \spadvar{r} with
++ components of type \spad{R} to a continued fraction over
++ \spad{R}.
continuedFraction: (R, Stream R, Stream R) -> %
++ continuedFraction(b0,a,b) constructs a continued fraction in
++ the following way: if \spad{a = [a1,a2,...]} and \spad{b =
++ [b1,b2,...]} then the result is the continued fraction
++ \spad{b0 + a1/(b1 + a2/(b2 + ...))}.
reducedContinuedFraction: (R, Stream R) -> %
++ reducedContinuedFraction(b0,b) constructs a continued
++ fraction in the following way: if \spad{b = [b1,b2,...]}
++ then the result is the continued fraction \spad{b0 + 1/(b1 +
++ 1/(b2 + ...))}. That is, the result is the same as
++ \spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.
partialNumerators: % -> Stream R
++ partialNumerators(x) extracts the numerators in \spadvar{x}.
++ That is, if \spad{x = continuedFraction(b0, [a1,a2,a3,...],
++ [b1,b2,b3,...])}, then \spad{partialNumerators(x) =
++ [a1,a2,a3,...]}.
partialDenominators: % -> Stream R
++ partialDenominators(x) extracts the denominators in
++ \spadvar{x}. That is, if \spad{x = continuedFraction(b0,
++ [a1,a2,a3,...], [b1,b2,b3,...])}, then
++ \spad{partialDenominators(x) = [b1,b2,b3,...]}.
partialQuotients: % -> Stream R
++ partialQuotients(x) extracts the partial quotients in
++ \spadvar{x}. That is, if \spad{x = continuedFraction(b0,
++ [a1,a2,a3,...], [b1,b2,b3,...])}, then
++ \spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.
wholePart: % -> R
++ wholePart(x) extracts the whole part of \spadvar{x}. That
++ is, if \spad{x = continuedFraction(b0, [a1,a2,a3,...],
++ [b1,b2,b3,...])}, then \spad{wholePart(x) = b0}.
reducedForm: % -> %
++ reducedForm(x) puts the continued fraction \spadvar{x} in
++ reduced form, i.e. the function returns an equivalent
++ continued fraction of the form
++ \spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.
approximants: % -> Stream Q
++ approximants(x) returns the stream of approximants of the
++ continued fraction \spadvar{x}. If the continued fraction is
++ finite, then the stream will be infinite and periodic with
++ period 1.
convergents: % -> Stream Q
++ convergents(x) returns the stream of the convergents of the
++ continued fraction \spadvar{x}. If the continued fraction is
++ finite, then the stream will be finite.
numerators: % -> Stream R
++ numerators(x) returns the stream of numerators of the
++ approximants of the continued fraction \spadvar{x}. If the
++ continued fraction is finite, then the stream will be finite.
denominators: % -> Stream R
++ denominators(x) returns the stream of denominators of the
++ approximants of the continued fraction \spadvar{x}. If the
++ continued fraction is finite, then the stream will be finite.
extend: (%,Integer) -> %
++ extend(x,n) causes the first \spadvar{n} entries in the
++ continued fraction \spadvar{x} to be computed. Normally
++ entries are only computed as needed.
complete: % -> %
++ complete(x) causes all entries in \spadvar{x} to be computed.
++ Normally entries are only computed as needed. If \spadvar{x}
++ is an infinite continued fraction, a user-initiated interrupt is
++ necessary to stop the computation.
Implementation ==> add
-- isOrdered ==> R is Integer
isOrdered ==> R has OrderedRing and R has multiplicativeValuation
canReduce? ==> isOrdered or R has additiveValuation
Rec ==> Record(num: R, den: R)
Str ==> Stream Rec
Rep := Record(value: Record(whole: R, fract: Str), reduced?: Boolean)
import Str
genFromSequence: Stream Q -> %
genReducedForm: (Q, Stream Q, MT) -> Stream Rec
genFractionA: (Stream R,Stream R) -> Stream Rec
genFractionB: (Stream R,Stream R) -> Stream Rec
genNumDen: (R,R, Stream Rec) -> Stream R
genApproximants: (R,R,R,R,Stream Rec) -> Stream Q
genConvergents: (R,R,R,R,Stream Rec) -> Stream Q
iGenApproximants: (R,R,R,R,Stream Rec) -> Stream Q
iGenConvergents: (R,R,R,R,Stream Rec) -> Stream Q
reducedForm c ==
c.reduced? => c
explicitlyFinite? c.value.fract =>
continuedFraction last complete convergents c
canReduce? => genFromSequence approximants c
error "Reduced form not defined for this continued fraction."
eucWhole(a: Q): R == numer a quo denom a
eucWhole0(a: Q): R ==
isOrdered =>
n := numer a
d := denom a
q := n quo d
r := n - q*d
if negative? r then q := q - 1
q
eucWhole a
x = y ==
x := reducedForm x
y := reducedForm y
x.value.whole ~= y.value.whole => false
xl := x.value.fract; yl := y.value.fract
while not empty? xl and not empty? yl repeat
frst.xl.den ~= frst.yl.den => return false
xl := rst xl; yl := rst yl
empty? xl and empty? yl
continuedFraction q == q :: %
if isOrdered then
continuedFraction(wh,nums,dens) == [[wh,genFractionA(nums,dens)],false]
genFractionA(nums,dens) ==
empty? nums or empty? dens => empty()
n := frst nums
d := frst dens
negative? n => error "Numerators must be greater than 0."
negative? d => error "Denominators must be greater than 0."
concat([n,d]$Rec, delay genFractionA(rst nums,rst dens))
else
continuedFraction(wh,nums,dens) == [[wh,genFractionB(nums,dens)],false]
genFractionB(nums,dens) ==
empty? nums or empty? dens => empty()
n := frst nums
d := frst dens
concat([n,d]$Rec, delay genFractionB(rst nums,rst dens))
reducedContinuedFraction(wh,dens) ==
continuedFraction(wh, repeating [1], dens)
coerce(n:Integer):% == [[n::R,empty()], true]
coerce(r:R):% == [[r, empty()], true]
coerce(a: Q): % ==
wh := eucWhole0 a
fr := a - wh::Q
zero? fr => [[wh, empty()], true]
l : List Rec := empty()
n := numer fr
d := denom fr
while not zero? d repeat
qr := divide(n,d)
l := concat([1,qr.quotient],l)
n := d
d := qr.remainder
[[wh, construct rest reverse! l], true]
characteristic == characteristic$Q
genFromSequence apps ==
lo := first apps; apps := rst apps
hi := first apps; apps := rst apps
while eucWhole0 lo ~= eucWhole0 hi repeat
lo := first apps; apps := rst apps
hi := first apps; apps := rst apps
wh := eucWhole0 lo
[[wh, genReducedForm(wh::Q, apps, moebius(1,0,0,1))], canReduce?]
genReducedForm(wh0, apps, mt) ==
lo: Q := first apps - wh0; apps := rst apps
hi: Q := first apps - wh0; apps := rst apps
lo = hi and zero? eval(mt, lo) => empty()
mt := recip mt
wlo := eucWhole eval(mt, lo)
whi := eucWhole eval(mt, hi)
while wlo ~= whi repeat
wlo := eucWhole eval(mt, first apps - wh0); apps := rst apps
whi := eucWhole eval(mt, first apps - wh0); apps := rst apps
concat([1,wlo], delay genReducedForm(wh0, apps, shift(mt, -wlo::Q)))
wholePart c == c.value.whole
partialNumerators c == map(#1.num, c.value.fract)$StreamFunctions2(Rec,R)
partialDenominators c == map(#1.den, c.value.fract)$StreamFunctions2(Rec,R)
partialQuotients c == concat(c.value.whole, partialDenominators c)
approximants c ==
empty? c.value.fract => repeating [c.value.whole::Q]
genApproximants(1,0,c.value.whole,1,c.value.fract)
convergents c ==
empty? c.value.fract => concat(c.value.whole::Q, empty())
genConvergents (1,0,c.value.whole,1,c.value.fract)
numerators c ==
empty? c.value.fract => concat(c.value.whole, empty())
genNumDen(1,c.value.whole,c.value.fract)
denominators c ==
genNumDen(0,1,c.value.fract)
extend(x,n) == (extend(x.value.fract,n); x)
complete(x) == (complete(x.value.fract); x)
iGenApproximants(pm2,qm2,pm1,qm1,fr) == delay
nd := frst fr
pm := nd.num*pm2 + nd.den*pm1
qm := nd.num*qm2 + nd.den*qm1
genApproximants(pm1,qm1,pm,qm,rst fr)
genApproximants(pm2,qm2,pm1,qm1,fr) ==
empty? fr => repeating [pm1/qm1]
concat(pm1/qm1,iGenApproximants(pm2,qm2,pm1,qm1,fr))
iGenConvergents(pm2,qm2,pm1,qm1,fr) == delay
nd := frst fr
pm := nd.num*pm2 + nd.den*pm1
qm := nd.num*qm2 + nd.den*qm1
genConvergents(pm1,qm1,pm,qm,rst fr)
genConvergents(pm2,qm2,pm1,qm1,fr) ==
empty? fr => concat(pm1/qm1, empty())
concat(pm1/qm1,iGenConvergents(pm2,qm2,pm1,qm1,fr))
genNumDen(m2,m1,fr) ==
empty? fr => concat(m1,empty())
concat(m1,delay genNumDen(m1,m2*frst(fr).num + m1*frst(fr).den,rst fr))
gen ==> genFromSequence
apx ==> approximants
c, d: %
a: R
q: Q
0 == (0$R) :: %
1 == (1$R) :: %
c + d == genFromSequence map(#1 + #2, apx c, apx d)
c - d == genFromSequence map(#1 - #2, apx c, rest apx d)
- c == genFromSequence map( - #1, rest apx c)
c * d == genFromSequence map(#1 * #2, apx c, apx d)
a * d == genFromSequence map( a * #1, apx d)
q * d == genFromSequence map( q * #1, apx d)
n: Integer * d == genFromSequence map( n * #1, apx d)
c / d == genFromSequence map(#1 / #2, apx c, rest apx d)
recip c ==(c = 0 => "failed";
genFromSequence map( 1 / #1, rest apx c))
showAll?: () -> Boolean
showAll?() ==
NULL(_$streamsShowAll$Lisp)$Lisp => false
true
zagRec(t:Rec):OUT == zag(t.num :: OUT,t.den :: OUT)
coerce(c:%): OUT ==
wh := c.value.whole
fr := c.value.fract
empty? fr => wh :: OUT
count : NonNegativeInteger := _$streamCount$Lisp
l : List OUT := empty()
for n in 1..count while not empty? fr repeat
l := concat(zagRec frst fr,l)
fr := rst fr
if showAll?() then
for n in (count + 1).. while explicitEntries? fr repeat
l := concat(zagRec frst fr,l)
fr := rst fr
if not explicitlyEmpty? fr then l := concat("..." :: OUT,l)
l := reverse! l
e := reduce("+",l)
zero? wh => e
(wh :: OUT) + e
@
\section{package NCNTFRAC NumericContinuedFraction}
<<package NCNTFRAC NumericContinuedFraction>>=
)abbrev package NCNTFRAC NumericContinuedFraction
++ Author: Clifton J. Williamson
++ Date Created: 12 April 1990
++ Change History:
++ Basic Operations: continuedFraction
++ Related Constructors: ContinuedFraction, Float
++ Also See: Fraction
++ AMS Classifications: 11J70 11A55 11K50 11Y65 30B70 40A15
++ Keywords: continued fraction
++ References:
++ Description: \spadtype{NumericContinuedFraction} provides functions
++ for converting floating point numbers to continued fractions.
NumericContinuedFraction(F): Exports == Implementation where
F : FloatingPointSystem
CFC ==> ContinuedFraction Integer
I ==> Integer
ST ==> Stream I
Exports ==> with
continuedFraction: F -> CFC
++ continuedFraction(f) converts the floating point number
++ \spad{f} to a reduced continued fraction.
Implementation ==> add
cfc: F -> ST
cfc(a) == delay
aa := wholePart a
zero?(b := a - (aa :: F)) => concat(aa,empty()$ST)
concat(aa,cfc inv b)
continuedFraction a ==
aa := wholePart a
zero?(b := a - (aa :: F)) =>
reducedContinuedFraction(aa,empty()$ST)
if negative? b then (aa := aa - 1; b := b + 1)
reducedContinuedFraction(aa,cfc inv b)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain CONTFRAC ContinuedFraction>>
<<package NCNTFRAC NumericContinuedFraction>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|