aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/complet.spad.pamphlet
blob: 5ac5d928ec9c27c0ba0740048510f9b79c223f86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra complet.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain ORDCOMP OrderedCompletion}
<<domain ORDCOMP OrderedCompletion>>=
)abbrev domain ORDCOMP OrderedCompletion
++ Completion with + and - infinity
++ Author: Manuel Bronstein
++ Description: Adjunction of two real infinites quantities to a set.
++ Date Created: 4 Oct 1989
++ Date Last Updated: 1 Nov 1989
OrderedCompletion(R:SetCategory): Exports == Implementation where
  B ==> Boolean

  Exports ==> Join(SetCategory, FullyRetractableTo R) with
    plusInfinity : () -> %        ++ plusInfinity() returns +infinity.
    minusInfinity: () -> %        ++ minusInfinity() returns  -infinity.
    finite?      : %  -> B
      ++ finite?(x) tests if x is finite.
    infinite?    : %  -> B
      ++ infinite?(x) tests if x is +infinity or -infinity,
    whatInfinity : %  -> SingleInteger
      ++ whatInfinity(x) returns 0 if x is finite,
      ++ 1 if x is +infinity, and -1 if x is -infinity.
    if R has AbelianGroup then AbelianGroup
    if R has OrderedRing then OrderedRing
    if R has IntegerNumberSystem then
      rational?: % -> Boolean
        ++ rational?(x) tests if x is a finite rational number.
      rational : % -> Fraction Integer
        ++ rational(x) returns x as a finite rational number.
        ++ Error: if x cannot be so converted.
      rationalIfCan: % -> Union(Fraction Integer, "failed")
        ++ rationalIfCan(x) returns x as a finite rational number if
        ++ it is one and "failed" otherwise.

  Implementation ==> add
    Rep := Union(fin:R, inf:B)  -- true = +infinity, false = -infinity

    coerce(r:R):%          == [r]
    retract(x:%):R         == (x case fin => x.fin; error "Not finite")
    finite? x              == x case fin
    infinite? x            == x case inf
    plusInfinity()         == [true]
    minusInfinity()        == [false]

    retractIfCan(x:%):Union(R, "failed") ==
      x case fin => x.fin
      "failed"

    coerce(x:%):OutputForm ==
      x case fin => (x.fin)::OutputForm
      e := "infinity"::OutputForm
      x.inf => empty() + e
      - e

    whatInfinity x ==
      x case fin => 0
      x.inf => 1
      -1

    x = y ==
      x case inf =>
        y case inf => not xor(x.inf, y.inf)
        false
      y case inf => false
      x.fin = y.fin

    if R has AbelianGroup then
      0 == [0$R]

      n:Integer * x:% ==
        x case inf =>
          n > 0 => x
          negative? n => [not(x.inf)]
          error "Undefined product"
        [n * x.fin]

      - x ==
        x case inf => [not(x.inf)]
        [- (x.fin)]

      x + y ==
        x case inf =>
          y case fin => x
          xor(x.inf, y.inf) => error "Undefined sum"
          x
        y case inf => y
        [x.fin + y.fin]

    if R has OrderedRing then
      fininf: (B, R) -> %

      1                == [1$R]
      characteristic   == characteristic$R

      fininf(b, r) ==
        r > 0 => [b]
        negative? r => [not b]
        error "Undefined product"

      x:% * y:% ==
        x case inf =>
          y case inf =>
            xor(x.inf, y.inf) => minusInfinity()
            plusInfinity()
          fininf(x.inf, y.fin)
        y case inf => fininf(y.inf, x.fin)
        [x.fin * y.fin]

      recip x ==
        x case inf => 0
        (u := recip(x.fin)) case "failed" => "failed"
        [u::R]

      x < y ==
        x case inf =>
          y case inf =>
            xor(x.inf, y.inf) => y.inf
            false
          not(x.inf)
        y case inf => y.inf
        x.fin < y.fin

    if R has IntegerNumberSystem then
      rational? x == finite? x
      rational  x == rational(retract(x)@R)

      rationalIfCan x ==
        (r:= retractIfCan(x)@Union(R,"failed")) case "failed" =>"failed"
        rational(r::R)

@
\section{package ORDCOMP2 OrderedCompletionFunctions2}
<<package ORDCOMP2 OrderedCompletionFunctions2>>=
)abbrev package ORDCOMP2 OrderedCompletionFunctions2
++ Lifting of maps to ordered completions
++ Author: Manuel Bronstein
++ Description: Lifting of maps to ordered completions.
++ Date Created: 4 Oct 1989
++ Date Last Updated: 4 Oct 1989
OrderedCompletionFunctions2(R, S): Exports == Implementation where
  R, S: SetCategory

  ORR ==> OrderedCompletion R
  ORS ==> OrderedCompletion S

  Exports ==> with
    map: (R -> S, ORR) -> ORS
      ++ map(f, r) lifts f and applies it to r, assuming that
      ++ f(plusInfinity) = plusInfinity and that
      ++ f(minusInfinity) = minusInfinity.
    map: (R -> S, ORR, ORS, ORS) -> ORS
      ++ map(f, r, p, m) lifts f and applies it to r, assuming that
      ++ f(plusInfinity) = p and that f(minusInfinity) = m.

  Implementation ==> add
    map(f, r) == map(f, r, plusInfinity(), minusInfinity())

    map(f, r, p, m) ==
      zero?(n := whatInfinity r) => (f retract r)::ORS
      one? n => p
      m

@
\section{domain ONECOMP OnePointCompletion}
<<domain ONECOMP OnePointCompletion>>=
)abbrev domain ONECOMP OnePointCompletion
++ Completion with infinity
++ Author: Manuel Bronstein
++ Description: Adjunction of a complex infinity to a set.
++ Date Created: 4 Oct 1989
++ Date Last Updated: 1 Nov 1989
OnePointCompletion(R:SetCategory): Exports == Implementation where
  B ==> Boolean

  Exports ==> Join(SetCategory, FullyRetractableTo R) with
    infinity : () -> %
      ++  infinity() returns infinity.
    finite?  : %  -> B
      ++ finite?(x) tests if x is finite.
    infinite?: %  -> B
      ++ infinite?(x) tests if x is infinite.
    if R has AbelianGroup then AbelianGroup
    if R has OrderedRing then OrderedRing
    if R has IntegerNumberSystem then
      rational?: % -> Boolean
        ++ rational?(x) tests if x is a finite rational number.
      rational : % -> Fraction Integer
        ++ rational(x) returns x as a finite rational number.
        ++ Error: if x is not a rational number.
      rationalIfCan: % -> Union(Fraction Integer, "failed")
        ++ rationalIfCan(x) returns x as a finite rational number if
        ++ it is one, "failed" otherwise.

  Implementation ==> add
    Rep := Union(R, "infinity")

    coerce(r:R):%          == r
    retract(x:%):R         == (x case R => x::R; error "Not finite")
    finite? x              == x case R
    infinite? x            == x case "infinity"
    infinity()             == "infinity"
    retractIfCan(x:%):Union(R, "failed") == (x case R => x::R; "failed")

    coerce(x:%):OutputForm ==
      x case "infinity" => "infinity"::OutputForm
      x::R::OutputForm

    x = y ==
      x case "infinity" => y case "infinity"
      y case "infinity" => false
      x::R = y::R

    if R has AbelianGroup then
      0 == 0$R

      n:Integer * x:% ==
        x case "infinity" =>
          zero? n => error "Undefined product"
          infinity()
        n * x::R

      - x ==
        x case "infinity" => error "Undefined inverse"
        - (x::R)

      x + y ==
        x case "infinity" => x
        y case "infinity" => y
        x::R + y::R

    if R has OrderedRing then
      fininf: R -> %

      1                == 1$R
      characteristic   == characteristic$R

      fininf r ==
        zero? r => error "Undefined product"
        infinity()

      x:% * y:% ==
        x case "infinity" =>
          y case "infinity" => y
          fininf(y::R)
        y case "infinity" => fininf(x::R)
        x::R * y::R

      recip x ==
        x case "infinity" => 0
        zero?(x::R) => infinity()
        (u := recip(x::R)) case "failed" => "failed"
        u::R::%

      x < y ==
        x case "infinity" => false     -- do not change the order
        y case "infinity" => true      -- of those two tests
        x::R < y::R

    if R has IntegerNumberSystem then
      rational? x == finite? x
      rational  x == rational(retract(x)@R)

      rationalIfCan x ==
        (r:= retractIfCan(x)@Union(R,"failed")) case "failed" =>"failed"
        rational(r::R)

    before?(x,y) ==
      x case "infinity" => false
      y case "infinity" => true
      before?(x::R, y::R)
@
\section{package ONECOMP2 OnePointCompletionFunctions2}
<<package ONECOMP2 OnePointCompletionFunctions2>>=
)abbrev package ONECOMP2 OnePointCompletionFunctions2
++ Lifting of maps to one-point completions
++ Author: Manuel Bronstein
++ Description: Lifting of maps to one-point completions.
++ Date Created: 4 Oct 1989
++ Date Last Updated: 4 Oct 1989
OnePointCompletionFunctions2(R, S): Exports == Implementation where
  R, S: SetCategory

  OPR ==> OnePointCompletion R
  OPS ==> OnePointCompletion S

  Exports ==> with
    map: (R -> S, OPR) -> OPS
      ++ map(f, r) lifts f and applies it to r, assuming that
      ++ f(infinity) = infinity.
    map: (R -> S, OPR, OPS) -> OPS
      ++ map(f, r, i) lifts f and applies it to r, assuming that
      ++ f(infinity) = i.

  Implementation ==> add
    map(f, r) == map(f, r, infinity())

    map(f, r, i) ==
      (u := retractIfCan r) case R => (f(u::R))::OPS
      i

@
\section{package INFINITY Infinity}
<<package INFINITY Infinity>>=
)abbrev package INFINITY Infinity
++ Top-level infinity
++ Author: Manuel Bronstein
++ Description: Default infinity signatures for the interpreter;
++ Date Created: 4 Oct 1989
++ Date Last Updated: 4 Oct 1989
Infinity(): with
  infinity     : () -> OnePointCompletion Integer
    ++ infinity() returns infinity.
  plusInfinity : () -> OrderedCompletion  Integer
    ++ plusInfinity() returns plusIinfinity.
  minusInfinity: () -> OrderedCompletion  Integer
    ++ minusInfinity() returns minusInfinity.
 == add
  infinity()      == infinity()$OnePointCompletion(Integer)
  plusInfinity()  == plusInfinity()$OrderedCompletion(Integer)
  minusInfinity() == minusInfinity()$OrderedCompletion(Integer)

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<domain ORDCOMP OrderedCompletion>>
<<package ORDCOMP2 OrderedCompletionFunctions2>>
<<domain ONECOMP OnePointCompletion>>
<<package ONECOMP2 OnePointCompletionFunctions2>>
<<package INFINITY Infinity>>

@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}