1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra clip.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package CLIP TwoDimensionalPlotClipping}
<<package CLIP TwoDimensionalPlotClipping>>=
)abbrev package CLIP TwoDimensionalPlotClipping
++ Automatic clipping for 2-dimensional plots
++ Author: Clifton J. Williamson
++ Date Created: 22 December 1989
++ Date Last Updated: 10 July 1990
++ Keywords: plot, singularity
++ Examples:
++ References:
TwoDimensionalPlotClipping(): Exports == Implementation where
++ The purpose of this package is to provide reasonable plots of
++ functions with singularities.
B ==> Boolean
L ==> List
SEG ==> Segment
RN ==> Fraction Integer
SF ==> DoubleFloat
Pt ==> Point DoubleFloat
PLOT ==> Plot
CLIPPED ==> Record(brans: L L Pt,xValues: SEG SF,yValues: SEG SF)
Exports ==> with
clip: PLOT -> CLIPPED
++ clip(p) performs two-dimensional clipping on a plot, p, from
++ the domain \spadtype{Plot} for the graph of one variable,
++ \spad{y = f(x)}; the default parameters \spad{1/4} for the fraction
++ and \spad{5/1} for the scale are used in the \spadfun{clip} function.
clip: (PLOT,RN,RN) -> CLIPPED
++ clip(p,frac,sc) performs two-dimensional clipping on a plot, p,
++ from the domain \spadtype{Plot} for the graph of one variable
++ \spad{y = f(x)}; the fraction parameter is specified by \spad{frac}
++ and the scale parameter is specified by \spad{sc} for use in the
++ \spadfun{clip} function.
clipParametric: PLOT -> CLIPPED
++ clipParametric(p) performs two-dimensional clipping on a plot,
++ p, from the domain \spadtype{Plot} for the parametric curve
++ \spad{x = f(t)}, \spad{y = g(t)}; the default parameters \spad{1/2}
++ for the fraction and \spad{5/1} for the scale are used in the
++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this
++ function.
clipParametric: (PLOT,RN,RN) -> CLIPPED
++ clipParametric(p,frac,sc) performs two-dimensional clipping on a
++ plot, p, from the domain \spadtype{Plot} for the parametric curve
++ \spad{x = f(t)}, \spad{y = g(t)}; the fraction parameter is
++ specified by \spad{frac} and the scale parameter is specified
++ by \spad{sc} for use in the \fakeAxiomFun{iClipParametric} subroutine,
++ which is called by this function.
clipWithRanges: (L L Pt,SF,SF,SF,SF) -> CLIPPED
++ clipWithRanges(pointLists,xMin,xMax,yMin,yMax) performs clipping
++ on a list of lists of points, \spad{pointLists}. Clipping is
++ done within the specified ranges of \spad{xMin}, \spad{xMax} and
++ \spad{yMin}, \spad{yMax}. This function is used internally by
++ the \fakeAxiomFun{iClipParametric} subroutine in this package.
clip: L Pt -> CLIPPED
++ clip(l) performs two-dimensional clipping on a curve l, which is
++ a list of points; the default parameters \spad{1/2} for the
++ fraction and \spad{5/1} for the scale are used in the
++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this
++ function.
clip: L L Pt -> CLIPPED
++ clip(ll) performs two-dimensional clipping on a list of lists
++ of points, \spad{ll}; the default parameters \spad{1/2} for
++ the fraction and \spad{5/1} for the scale are used in the
++ \fakeAxiomFun{iClipParametric} subroutine, which is called by this
++ function.
Implementation ==> add
import PointPackage(DoubleFloat)
import ListFunctions2(Point DoubleFloat,DoubleFloat)
point:(SF,SF) -> Pt
intersectWithHorizLine:(SF,SF,SF,SF,SF) -> Pt
intersectWithVertLine:(SF,SF,SF,SF,SF) -> Pt
intersectWithBdry:(SF,SF,SF,SF,Pt,Pt) -> Pt
discardAndSplit: (L Pt,Pt -> B,SF,SF,SF,SF) -> L L Pt
norm: Pt -> SF
iClipParametric: (L L Pt,RN,RN) -> CLIPPED
findPt: L L Pt -> Union(Pt,"failed")
Fnan?: SF ->Boolean
Pnan?:Pt ->Boolean
Fnan? x == x~=x
Pnan? p == any?(Fnan?,p)
iClipParametric(pointLists,fraction,scale) ==
-- error checks and special cases
negative? fraction or (fraction > 1) =>
error "clipDraw: fraction should be between 0 and 1"
empty? pointLists => [nil(),segment(0,0),segment(0,0)]
-- put all points together , sort them according to norm
sortedList := sort(norm(#1) < norm(#2),select(not Pnan? #1,concat pointLists))
empty? sortedList => [nil(),segment(0,0),segment(0,0)]
n := # sortedList
num := numer fraction
den := denom fraction
clipNum := (n * num) quo den
lastN := n - 1 - clipNum
firstPt := first sortedList
xMin : SF := xCoord firstPt
xMax : SF := xCoord firstPt
yMin : SF := yCoord firstPt
yMax : SF := yCoord firstPt
-- calculate min/max for the first (1-fraction)*N points
-- this contracts the range
-- this unnecessarily clips monotonic functions (step-function, x^(high power),etc.)
for k in 0..lastN for pt in rest sortedList repeat
xMin := min(xMin,xCoord pt)
xMax := max(xMax,xCoord pt)
yMin := min(yMin,yCoord pt)
yMax := max(yMax,yCoord pt)
xDiff := xMax - xMin; yDiff := yMax - yMin
xDiff = 0 =>
yDiff = 0 =>
[pointLists,segment(xMin-1,xMax+1),segment(yMin-1,yMax+1)]
[pointLists,segment(xMin-1,xMax+1),segment(yMin,yMax)]
yDiff = 0 =>
[pointLists,segment(xMin,xMax),segment(yMin-1,yMax+1)]
numm := numer scale; denn := denom scale
-- now expand the range by scale
xMin := xMin - (numm :: SF) * xDiff / (denn :: SF)
xMax := xMax + (numm :: SF) * xDiff / (denn :: SF)
yMin := yMin - (numm :: SF) * yDiff / (denn :: SF)
yMax := yMax + (numm :: SF) * yDiff / (denn :: SF)
-- clip with the calculated range
newclip:=clipWithRanges(pointLists,xMin,xMax,yMin,yMax)
-- if we split the lists use the new clip
# (newclip.brans) > # pointLists => newclip
-- calculate extents
xs :L SF:= map (xCoord,sortedList)
ys :L SF:= map (yCoord,sortedList)
xMin :SF :=reduce (min,xs)
yMin :SF :=reduce (min,ys)
xMax :SF :=reduce (max,xs)
yMax :SF :=reduce (max,ys)
xseg:SEG SF :=xMin..xMax
yseg:SEG SF :=yMin..yMax
-- return original
[pointLists,xseg,yseg]@CLIPPED
point(xx,yy) == point(l : L SF := [xx,yy])
intersectWithHorizLine(x1,y1,x2,y2,yy) ==
x1 = x2 => point(x1,yy)
point(x1 + (x2 - x1)*(yy - y1)/(y2 - y1),yy)
intersectWithVertLine(x1,y1,x2,y2,xx) ==
y1 = y2 => point(xx,y1)
point(xx,y1 + (y2 - y1)*(xx - x1)/(x2 - x1))
intersectWithBdry(xMin,xMax,yMin,yMax,pt1,pt2) ==
-- pt1 is in rectangle, pt2 is not
x1 := xCoord pt1; y1 := yCoord pt1
x2 := xCoord pt2; y2 := yCoord pt2
if y2 > yMax then
pt2 := intersectWithHorizLine(x1,y1,x2,y2,yMax)
x2 := xCoord pt2; y2 := yCoord pt2
if y2 < yMin then
pt2 := intersectWithHorizLine(x1,y1,x2,y2,yMin)
x2 := xCoord pt2; y2 := yCoord pt2
if x2 > xMax then
pt2 := intersectWithVertLine(x1,y1,x2,y2,xMax)
x2 := xCoord pt2; y2 := yCoord pt2
if x2 < xMin then
pt2 := intersectWithVertLine(x1,y1,x2,y2,xMin)
pt2
discardAndSplit(pointList,pred,xMin,xMax,yMin,yMax) ==
ans : L L Pt := nil()
list : L Pt := nil()
lastPt? : B := false
lastPt : Pt := point(0,0)
while not empty? pointList repeat
pt := first pointList
pointList := rest pointList
pred(pt) =>
if (empty? list) and lastPt? then
bdryPt := intersectWithBdry(xMin,xMax,yMin,yMax,pt,lastPt)
-- print bracket [ coerce bdryPt ,coerce pt ]
--list := cons(bdryPt,list)
list := cons(pt,list)
if not empty? list then
bdryPt := intersectWithBdry(xMin,xMax,yMin,yMax,first list,pt)
-- print bracket [ coerce bdryPt,coerce first list]
--list := cons(bdryPt,list)
ans := cons( list,ans)
lastPt := pt
lastPt? := true
list := nil()
empty? list => ans
reverse! cons(reverse! list,ans)
clip(plot,fraction,scale) ==
-- sayBrightly([" clip: "::OutputForm]$List(OutputForm))$Lisp
negative? fraction or (fraction > 1/2) =>
error "clipDraw: fraction should be between 0 and 1/2"
xVals := xRange plot
empty?(pointLists := listBranches plot) =>
[nil(),xVals,segment(0,0)]
#(pointLists := listBranches plot) > 1 =>
error "clipDraw: plot has more than one branch"
empty?(pointList := first pointLists) =>
[nil(),xVals,segment(0,0)]
sortedList := sort(yCoord(#1) < yCoord(#2),pointList)
n := # sortedList; num := numer fraction; den := denom fraction
clipNum := (n * num) quo den
-- throw out points with large and small y-coordinates
yMin := yCoord(sortedList.clipNum)
yMax := yCoord(sortedList.(n - 1 - clipNum))
if Fnan? yMin then yMin : SF := 0
if Fnan? yMax then yMax : SF := 0
(yDiff := yMax - yMin) = 0 =>
[pointLists,xRange plot,segment(yMin - 1,yMax + 1)]
numm := numer scale; denn := denom scale
xMin := lo xVals; xMax := hi xVals
yMin := yMin - (numm :: SF) * yDiff / (denn :: SF)
yMax := yMax + (numm :: SF) * yDiff / (denn :: SF)
lists := discardAndSplit(pointList,_
(yCoord(#1) < yMax) and (yCoord(#1) > yMin),xMin,xMax,yMin,yMax)
yMin := yCoord(sortedList.clipNum)
yMax := yCoord(sortedList.(n - 1 - clipNum))
if Fnan? yMin then yMin : SF := 0
if Fnan? yMax then yMax : SF := 0
for list in lists repeat
for pt in list repeat
if not Fnan?(yCoord pt) then
yMin := min(yMin,yCoord pt)
yMax := max(yMax,yCoord pt)
[lists,xVals,segment(yMin,yMax)]
clip(plot:PLOT) == clip(plot,1/4,5/1)
norm(pt) ==
x := xCoord(pt); y := yCoord(pt)
if Fnan? x then
if Fnan? y then
r:SF := 0
else
r:SF := y**2
else
if Fnan? y then
r:SF := x**2
else
r:SF := x**2 + y**2
r
findPt lists ==
for list in lists repeat
not empty? list =>
for p in list repeat
not Pnan? p => return p
"failed"
clipWithRanges(pointLists,xMin,xMax,yMin,yMax) ==
lists : L L Pt := nil()
for pointList in pointLists repeat
lists := concat(lists,discardAndSplit(pointList,_
(xCoord(#1) <= xMax) and (xCoord(#1) >= xMin) and _
(yCoord(#1) <= yMax) and (yCoord(#1) >= yMin), _
xMin,xMax,yMin,yMax))
(pt := findPt lists) case "failed" =>
[nil(),segment(0,0),segment(0,0)]
firstPt := pt :: Pt
xMin : SF := xCoord firstPt; xMax : SF := xCoord firstPt
yMin : SF := yCoord firstPt; yMax : SF := yCoord firstPt
for list in lists repeat
for pt in list repeat
if not Pnan? pt then
xMin := min(xMin,xCoord pt)
xMax := max(xMax,xCoord pt)
yMin := min(yMin,yCoord pt)
yMax := max(yMax,yCoord pt)
[lists,segment(xMin,xMax),segment(yMin,yMax)]
clipParametric(plot,fraction,scale) ==
iClipParametric(listBranches plot,fraction,scale)
clipParametric plot == clipParametric(plot,1/2,5/1)
clip(l: L Pt) == iClipParametric(list l,1/2,5/1)
clip(l: L L Pt) == iClipParametric(l,1/2,5/1)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package CLIP TwoDimensionalPlotClipping>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|