1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra cden.spad}
\author{Manuel Bronstein}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package ICDEN InnerCommonDenominator}
<<package ICDEN InnerCommonDenominator>>=
)abbrev package ICDEN InnerCommonDenominator
--% InnerCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Nov 1989
++ Description: InnerCommonDenominator provides functions to compute
++ the common denominator of a finite linear aggregate of elements
++ of the quotient field of an integral domain.
++ Keywords: gcd, quotient, common, denominator.
InnerCommonDenominator(R, Q, A, B): Exports == Implementation where
R: IntegralDomain
Q: QuotientFieldCategory R
A: FiniteLinearAggregate R
B: FiniteLinearAggregate Q
Exports ==> with
commonDenominator: B -> R
++ commonDenominator([q1,...,qn]) returns a common denominator
++ d for q1,...,qn.
clearDenominator : B -> A
++ clearDenominator([q1,...,qn]) returns \spad{[p1,...,pn]} such that
++ \spad{qi = pi/d} where d is a common denominator for the qi's.
splitDenominator : B -> Record(num: A, den: R)
++ splitDenominator([q1,...,qn]) returns
++ \spad{[[p1,...,pn], d]} such that
++ \spad{qi = pi/d} and d is a common denominator for the qi's.
Implementation ==> add
import FiniteLinearAggregateFunctions2(Q, B, R, A)
clearDenominator l ==
d := commonDenominator l
map(numer(d * #1), l)
splitDenominator l ==
d := commonDenominator l
[map(numer(d * #1), l), d]
if R has GcdDomain then
commonDenominator l == reduce(lcm, map(denom, l),1)
else
commonDenominator l == reduce("*", map(denom, l), 1)
@
\section{package CDEN CommonDenominator}
<<package CDEN CommonDenominator>>=
)abbrev package CDEN CommonDenominator
--% CommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Nov 1989
++ Description: CommonDenominator provides functions to compute the
++ common denominator of a finite linear aggregate of elements of
++ the quotient field of an integral domain.
++ Keywords: gcd, quotient, common, denominator.
CommonDenominator(R, Q, A): Exports == Implementation where
R: IntegralDomain
Q: QuotientFieldCategory R
A: FiniteLinearAggregate Q
Exports ==> with
commonDenominator: A -> R
++ commonDenominator([q1,...,qn]) returns a common denominator
++ d for q1,...,qn.
clearDenominator : A -> A
++ clearDenominator([q1,...,qn]) returns \spad{[p1,...,pn]} such that
++ \spad{qi = pi/d} where d is a common denominator for the qi's.
splitDenominator : A -> Record(num: A, den: R)
++ splitDenominator([q1,...,qn]) returns
++ \spad{[[p1,...,pn], d]} such that
++ \spad{qi = pi/d} and d is a common denominator for the qi's.
Implementation ==> add
clearDenominator l ==
d := commonDenominator l
map(numer(d * #1)::Q, l)
splitDenominator l ==
d := commonDenominator l
[map(numer(d * #1)::Q, l), d]
if R has GcdDomain then
qlcm: (Q, Q) -> Q
qlcm(a, b) == lcm(numer a, numer b)::Q
commonDenominator l == numer reduce(qlcm, map(denom(#1)::Q, l), 1)
else
commonDenominator l == numer reduce("*", map(denom(#1)::Q, l), 1)
@
\section{package UPCDEN UnivariatePolynomialCommonDenominator}
<<package UPCDEN UnivariatePolynomialCommonDenominator>>=
)abbrev package UPCDEN UnivariatePolynomialCommonDenominator
--% UnivariatePolynomialCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 22 Feb 1990
++ Description: UnivariatePolynomialCommonDenominator provides
++ functions to compute the common denominator of the coefficients of
++ univariate polynomials over the quotient field of a gcd domain.
++ Keywords: gcd, quotient, common, denominator, polynomial.
UnivariatePolynomialCommonDenominator(R, Q, UP): Exports == Impl where
R : IntegralDomain
Q : QuotientFieldCategory R
UP: UnivariatePolynomialCategory Q
Exports ==> with
commonDenominator: UP -> R
++ commonDenominator(q) returns a common denominator d for
++ the coefficients of q.
clearDenominator : UP -> UP
++ clearDenominator(q) returns p such that \spad{q = p/d} where d is
++ a common denominator for the coefficients of q.
splitDenominator : UP -> Record(num: UP, den: R)
++ splitDenominator(q) returns \spad{[p, d]} such that \spad{q = p/d} and d
++ is a common denominator for the coefficients of q.
Impl ==> add
import CommonDenominator(R, Q, List Q)
commonDenominator p == commonDenominator coefficients p
clearDenominator p ==
d := commonDenominator p
map(numer(d * #1)::Q, p)
splitDenominator p ==
d := commonDenominator p
[map(numer(d * #1)::Q, p), d]
@
\section{package MCDEN MatrixCommonDenominator}
<<package MCDEN MatrixCommonDenominator>>=
)abbrev package MCDEN MatrixCommonDenominator
--% MatrixCommonDenominator
++ Author: Manuel Bronstein
++ Date Created: 2 May 1988
++ Date Last Updated: 20 Jul 1990
++ Description: MatrixCommonDenominator provides functions to
++ compute the common denominator of a matrix of elements of the
++ quotient field of an integral domain.
++ Keywords: gcd, quotient, matrix, common, denominator.
MatrixCommonDenominator(R, Q): Exports == Implementation where
R: IntegralDomain
Q: QuotientFieldCategory R
VR ==> Vector R
VQ ==> Vector Q
Exports ==> with
commonDenominator: Matrix Q -> R
++ commonDenominator(q) returns a common denominator d for
++ the elements of q.
clearDenominator : Matrix Q -> Matrix R
++ clearDenominator(q) returns p such that \spad{q = p/d} where d is
++ a common denominator for the elements of q.
splitDenominator : Matrix Q -> Record(num: Matrix R, den: R)
++ splitDenominator(q) returns \spad{[p, d]} such that \spad{q = p/d} and d
++ is a common denominator for the elements of q.
Implementation ==> add
import ListFunctions2(Q, R)
import MatrixCategoryFunctions2(Q,VQ,VQ,Matrix Q,R,VR,VR,Matrix R)
clearDenominator m ==
d := commonDenominator m
map(numer(d * #1), m)
splitDenominator m ==
d := commonDenominator m
[map(numer(d * #1), m), d]
if R has GcdDomain then
commonDenominator m == lcm map(denom, parts m)
else
commonDenominator m == reduce("*",map(denom, parts m),1)$List(R)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package ICDEN InnerCommonDenominator>>
<<package CDEN CommonDenominator>>
<<package UPCDEN UnivariatePolynomialCommonDenominator>>
<<package MCDEN MatrixCommonDenominator>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|