1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/algebra bags.spad}
\author{Michael Monagan, Stephen Watt}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{domain STACK Stack}
<<domain STACK Stack>>=
)abbrev domain STACK Stack
++ Author: Michael Monagan and Stephen Watt
++ Date Created:June 86 and July 87
++ Date Last Updated: December 02, 2007
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description:
++ Linked List implementation of a Stack
--% Dequeue and Heap data types
Stack(S: Type): StackAggregate S with
stack: List S -> %
++ stack([x,y,...,z]) creates a stack with first (top)
++ element x, second element y,...,and last element z.
== add
Rep := Reference List S
if S has CoercibleTo OutputForm then
coerce(d:%): OutputForm ==
bracket [e::OutputForm for e in deref d]
if S has SetCategory then
s = t ==
deref s = deref t
parts s == -- from HOAGG
deref s
map(f: S -> S, s: %) == -- from HOAGG
ref map(f, deref s)$List(S)
map!(f: S -> S, s: %) == -- from HOAGG
map!(f, deref s)$List(S)
s
copy s == ref copy deref s
depth s == # deref s
# s == depth s
pop_! (s:%):S ==
empty? s => error "empty stack"
e := first deref s
setref(s,rest deref s)
e
extract_! (s:%):S == pop_! s
top (s:%):S ==
empty? s => error "empty stack"
first deref s
inspect s == top s
push_!(e,s) == (setref(s,cons(e,deref s));e)
insert_!(e:S,s:%):% == (push_!(e,s);s)
empty() == ref nil()$List(S)
empty? s == null deref s
stack s == ref copy s
@
\section{domain ASTACK ArrayStack}
<<domain ASTACK ArrayStack>>=
)abbrev domain ASTACK ArrayStack
++ Author: Michael Monagan and Stephen Watt
++ Date Created:June 86 and July 87
++ Date Last Updated:Feb 92
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description:
++ A stack represented as a flexible array.
--% Dequeue and Heap data types
ArrayStack(S:SetCategory): StackAggregate(S) with
arrayStack: List S -> %
++ arrayStack([x,y,...,z]) creates an array stack with first (top)
++ element x, second element y,...,and last element z.
== add
Rep := IndexedFlexibleArray(S,0)
-- system operations
# s == _#(s)$Rep
s = t == s =$Rep t
copy s == copy(s)$Rep
coerce(d):OutputForm ==
empty? d => empty()$(List S) ::OutputForm
[(d.i::OutputForm) for i in 0..#d-1] ::OutputForm
-- stack operations
depth s == # s
empty? s == empty?(s)$Rep
extract_! s == pop_! s
insert_!(e,s) == (push_!(e,s);s)
push_!(e,s) == (concat(e,s); e)
pop_! s ==
if empty? s then error "empty stack"
m := maxIndex s
r := s.m
delete_!(s,m)
r
top s == if empty? s then error "empty stack" else s.maxIndex(s)
arrayStack l == construct(l)$Rep
empty() == new(0,0 pretend S)
@
\section{domain QUEUE Queue}
<<domain QUEUE Queue>>=
)abbrev domain QUEUE Queue
++ Author: Michael Monagan and Stephen Watt
++ Date Created:June 86 and July 87
++ Date Last Updated:Feb 92
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description:
++ Linked List implementation of a Queue
--% Dequeue and Heap data types
Queue(S:SetCategory): QueueAggregate S with
queue: List S -> %
++ queue([x,y,...,z]) creates a queue with first (top)
++ element x, second element y,...,and last (bottom) element z.
== Stack S add
Rep := Reference List S
lastTail==> LAST$Lisp
enqueue_!(e,q) ==
if null deref q then setref(q, list e)
else lastTail.(deref q).rest := list e
e
insert_!(e,q) == (enqueue_!(e,q);q)
dequeue_! q ==
empty? q => error "empty queue"
e := first deref q
setref(q,rest deref q)
e
extract_! q == dequeue_! q
rotate_! q == if empty? q then q else (enqueue_!(dequeue_! q,q); q)
length q == # deref q
front q == if empty? q then error "empty queue" else first deref q
inspect q == front q
back q == if empty? q then error "empty queue" else last deref q
queue q == ref copy q
@
\section{domain DEQUEUE Dequeue}
<<domain DEQUEUE Dequeue>>=
)abbrev domain DEQUEUE Dequeue
++ Author: Michael Monagan and Stephen Watt
++ Date Created:June 86 and July 87
++ Date Last Updated:Feb 92
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description:
++ Linked list implementation of a Dequeue
--% Dequeue and Heap data types
Dequeue(S:SetCategory): DequeueAggregate S with
dequeue: List S -> %
++ dequeue([x,y,...,z]) creates a dequeue with first (top or front)
++ element x, second element y,...,and last (bottom or back) element z.
== Queue S add
Rep := Reference List S
bottom_! d ==
if empty? d then error "empty dequeue" else last deref d
dequeue d == ref copy d
extractBottom_! d ==
if empty? d then error "empty dequeue"
p := deref d
n := maxIndex p
n = 1 =>
r := first p
setref(d,[])
r
q := rest(p,(n-2)::NonNegativeInteger)
r := first rest q
q.rest := []
r
extractTop_! d ==
e := top d
setref(d,rest deref d)
e
height d == # deref d
insertTop_!(e,d) == (setref(d,cons(e,deref d)); e)
lastTail==> LAST$Lisp
insertBottom_!(e,d) ==
if empty? d then setref(d, list e)
else lastTail.(deref d).rest := list e
e
top d == if empty? d then error "empty dequeue" else first deref d
reverse_! d == (setref(d,reverse deref d); d)
@
\section{domain HEAP Heap}
<<domain HEAP Heap>>=
)abbrev domain HEAP Heap
++ Author: Michael Monagan and Stephen Watt
++ Date Created:June 86 and July 87
++ Date Last Updated:Feb 92
++ Basic Operations:
++ Related Domains:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ Examples:
++ References:
++ Description:
++ Heap implemented in a flexible array to allow for insertions
++ Complexity: O(log n) insertion, extraction and O(n) construction
--% Dequeue and Heap data types
Heap(S:OrderedSet): Exports == Implementation where
Exports == PriorityQueueAggregate S with
heap : List S -> %
++ heap(ls) creates a heap of elements consisting of the
++ elements of ls.
Implementation == IndexedFlexibleArray(S,0) add
Rep := IndexedFlexibleArray( S,0)
empty() == empty()$Rep
heap l ==
n := #l
h := empty()
n = 0 => h
for x in l repeat insert_!(x,h)
h
siftUp: (%,Integer,Integer) -> Void
siftUp(r,i,n) ==
-- assertion 0 <= i < n
t := r.i
while (j := 2*i+1) < n repeat
if (k := j+1) < n and r.j < r.k then j := k
if t < r.j then (r.i := r.j; r.j := t; i := j) else leave
extract_! r ==
-- extract the maximum from the heap O(log n)
n := #r :: Integer
n = 0 => error "empty heap"
t := r(0)
r(0) := r(n-1)
delete_!(r,n-1)
n = 1 => t
siftUp(r,0,n-1)
t
insert_!(x,r) ==
-- Williams' insertion algorithm O(log n)
j := (#r) :: Integer
r:=concat_!(r,concat(x,empty()$Rep))
while j > 0 repeat
i := (j-1) quo 2
if r(i) >= x then leave
r(j) := r(i)
j := i
r(j):=x
r
max r == if #r = 0 then error "empty heap" else r.0
inspect r == max r
makeHeap(r:%):% ==
-- Floyd's heap construction algorithm O(n)
n := #r
for k in n quo 2 -1 .. 0 by -1 repeat siftUp(r,k,n)
r
bag l == makeHeap construct(l)$Rep
merge(a,b) == makeHeap concat(a,b)
merge_!(a,b) == makeHeap concat_!(a,b)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<domain STACK Stack>>
<<domain ASTACK ArrayStack>>
<<domain QUEUE Queue>>
<<domain DEQUEUE Dequeue>>
<<domain HEAP Heap>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|