1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
|
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{src/algebra acplot.spad}
\author{Clifton J. Williamson}
\maketitle
\begin{abstract}
\end{abstract}
\tableofcontents
\eject
\section{package REALSOLV RealSolvePackage}
<<package REALSOLV RealSolvePackage>>=
import PolynomialCategoryLifting
import Integer
import Float
import Symbol
import Fraction
import Polynomial
import FloatingRealPackage
)abbrev package REALSOLV RealSolvePackage
RealSolvePackage(): Exports == Implementation where
++ This package provides numerical solutions of systems of polynomial
++ equations for use in ACPLOT.
I ==> Integer
IE ==> IndexedExponents Symbol
L ==> List
NF ==> Float
P ==> Polynomial
RN ==> Fraction Integer
SE ==> Symbol
RFI ==> Fraction Polynomial Integer
LIFT ==> PolynomialCategoryLifting(IE,SE,RN,P RN,RFI)
SOLV ==> FloatingRealPackage Float
Exports ==> with
solve: (P RN,NF) -> L NF
++ solve(p,eps) finds the real zeroes of a
++ univariate rational polynomial p with precision eps.
solve: (P I,NF) -> L NF
++ solve(p,eps) finds the real zeroes of a univariate
++ integer polynomial p with precision eps.
realSolve: (L P I,L SE,NF) -> L L NF
++ realSolve(lp,lv,eps) = compute the list of the real
++ solutions of the list lp of polynomials with integer
++ coefficients with respect to the variables in lv,
++ with precision eps.
Implementation ==> add
prn2rfi: P RN -> RFI
prn2rfi p ==
map(#1 :: RFI,(numer(#1) :: RFI)/(denom(#1) :: RFI),p)$LIFT
pi2rfi: P I -> RFI
pi2rfi p == p :: RFI
solve(p:P RN,eps:NF) == realRoots(prn2rfi p,eps)$SOLV
solve(p:P I,eps:NF) ==
realRoots(p :: RFI,eps)$SOLV
realSolve(lp,lv,eps) ==
realRoots(map(pi2rfi,lp)$ListFunctions2(P I,RFI),lv,eps)$SOLV
@
\section{domain ACPLOT PlaneAlgebraicCurvePlot}
<<domain ACPLOT PlaneAlgebraicCurvePlot>>=
import PlottablePlaneCurveCategory
import Boolean
import Integer
import PositiveInteger
import DoubleFloat
import Float
import Symbol
import Polynomial
import UnivariatePolynomial
import SparseUnivariatePolynomial
import Point
import List
++ Plot a NON-SINGULAR plane algebraic curve p(x,y) = 0.
++ Author: Clifton J. Williamson
++ Date Created: Fall 1988
++ Date Last Updated: 27 April 1990
++ Keywords: algebraic curve, non-singular, plot
++ Examples:
++ References:
)abbrev domain ACPLOT PlaneAlgebraicCurvePlot
PlaneAlgebraicCurvePlot():Exports == Implementation where
B ==> Boolean
OUT ==> OutputForm
SE ==> Symbol
L ==> List
SEG ==> Segment
I ==> Integer
PI ==> PositiveInteger
RN ==> Fraction Integer
NF ==> Float
SF ==> DoubleFloat
P ==> Polynomial
UP ==> UnivariatePolynomial
SUP ==> SparseUnivariatePolynomial
FR ==> Factored
Pt ==> Point DoubleFloat
BoundaryPts ==> Record(left: L Pt,_
right: L Pt,_
bottom: L Pt,_
top: L Pt)
NewPtInfo ==> Record(newPt: Pt,_
type: String)
Corners ==> Record(minXVal: SF,_
maxXVal: SF,_
minYVal: SF,_
maxYVal: SF)
kinte ==> solve$RealSolvePackage()
rsolve ==> realSolve$RealSolvePackage()
Exports ==> PlottablePlaneCurveCategory with
makeSketch:(P I,SE,SE,SEG RN,SEG RN) -> %
++ makeSketch(p,x,y,a..b,c..d) creates an ACPLOT of the
++ curve \spad{p = 0} in the region {\em a <= x <= b, c <= y <= d}.
++ More specifically, 'makeSketch' plots a non-singular algebraic curve
++ \spad{p = 0} in an rectangular region {\em xMin <= x <= xMax},
++ {\em yMin <= y <= yMax}. The user inputs
++ \spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}.
++ Here p is a polynomial in the variables x and y with
++ integer coefficients (p belongs to the domain
++ \spad{Polynomial Integer}). The case
++ where p is a polynomial in only one of the variables is
++ allowed. The variables x and y are input to specify the
++ the coordinate axes. The horizontal axis is the x-axis and
++ the vertical axis is the y-axis. The rational numbers
++ xMin,...,yMax specify the boundaries of the region in
++ which the curve is to be plotted.
refine:(%,SF) -> %
++ refine(p,x) \undocumented{}
Implementation ==> add
import PointPackage DoubleFloat
import Plot
import RealSolvePackage
singValBetween?:(SF,SF,L SF) -> B
segmentInfo:(SF -> SF,SF,SF,L SF,L SF,L SF,SF,SF) -> _
Record(seg:SEG SF,left: SF,lowerVals: L SF,upperVals:L SF)
swapCoords:Pt -> Pt
samePlottedPt?:(Pt,Pt) -> B
findPtOnList:(Pt,L Pt) -> Union(Pt,"failed")
makeCorners:(SF,SF,SF,SF) -> Corners
getXMin: Corners -> SF
getXMax: Corners -> SF
getYMin: Corners -> SF
getYMax: Corners -> SF
SFPolyToUPoly:P SF -> SUP SF
RNPolyToUPoly:P RN -> SUP RN
coerceCoefsToSFs:P I -> P SF
coerceCoefsToRNs:P I -> P RN
RNtoSF:RN -> SF
RNtoNF:RN -> NF
SFtoNF:SF -> NF
listPtsOnHorizBdry:(P RN,SE,RN,NF,NF) -> L Pt
listPtsOnVertBdry:(P RN,SE,RN,NF,NF) -> L Pt
listPtsInRect:(L L NF,NF,NF,NF,NF) -> L Pt
ptsSuchThat?:(L L NF,L NF -> B) -> B
inRect?:(L NF,NF,NF,NF,NF) -> B
onHorzSeg?:(L NF,NF,NF,NF) -> B
onVertSeg?:(L NF,NF,NF,NF) -> B
newX:(L L NF,L L NF,NF,NF,NF,RN,RN) -> RN
newY:(L L NF,L L NF,NF,NF,NF,RN,RN) -> RN
makeOneVarSketch:(P I,SE,SE,RN,RN,RN,RN,SE) -> %
makeLineSketch:(P I,SE,SE,RN,RN,RN,RN) -> %
makeRatFcnSketch:(P I,SE,SE,RN,RN,RN,RN,SE) -> %
makeGeneralSketch:(P I,SE,SE,RN,RN,RN,RN) -> %
traceBranches:(P SF,P SF,P SF,SE,SE,Corners,SF,SF,PI,_
L Pt,BoundaryPts) -> L L Pt
dummyFirstPt:(Pt,P SF,P SF,SE,SE,L Pt,L Pt,L Pt,L Pt) -> Pt
listPtsOnSegment:(P SF,P SF,P SF,SE,SE,Pt,Pt,Corners,_
SF,SF,PI,L Pt,L Pt) -> L L Pt
listPtsOnLoop:(P SF,P SF,P SF,SE,SE,Pt,Corners,_
SF,SF,PI,L Pt,L Pt) -> L L Pt
computeNextPt:(P SF,P SF,P SF,SE,SE,Pt,Pt,Corners,_
SF,SF,PI,L Pt,L Pt) -> NewPtInfo
newtonApprox:(SUP SF, SF, SF, PI) -> Union(SF, "failed")
--% representation
Rep := Record(poly : P I,_
xVar : SE,_
yVar : SE,_
minXVal : RN,_
maxXVal : RN,_
minYVal : RN,_
maxYVal : RN,_
bdryPts : BoundaryPts,_
hTanPts : L Pt,_
vTanPts : L Pt,_
branches: L L Pt)
--% global constants
EPSILON : NF := 0.000001 -- precision to which realSolve finds roots
PLOTERR : SF := float(1,-3,10)
-- maximum allowable difference in each coordinate when
-- determining if 2 plotted points are equal
--% global flags
NADA : String := "nothing in particular"
BDRY : String := "boundary point"
CRIT : String := "critical point"
BOTTOM : String := "bottom"
TOP : String := "top"
--% hacks
NFtoSF: NF -> SF
NFtoSF x == 0 + convert(x)$NF
--% points
makePt: (SF,SF) -> Pt
makePt(xx,yy) == point(l : L SF := [xx,yy])
swapCoords(pt) == makePt(yCoord pt,xCoord pt)
samePlottedPt?(p0,p1) ==
-- determines if p1 lies in a square with side 2 PLOTERR
-- centered at p0
x0 := xCoord p0; y0 := yCoord p0
x1 := xCoord p1; y1 := yCoord p1
(abs(x1-x0) < PLOTERR) and (abs(y1-y0) < PLOTERR)
findPtOnList(pt,pointList) ==
for point in pointList repeat
samePlottedPt?(pt,point) => return point
"failed"
--% corners
makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF) ==
[xMinSF,xMaxSF,yMinSF,yMaxSF]
getXMin(corners) == corners.minXVal
getXMax(corners) == corners.maxXVal
getYMin(corners) == corners.minYVal
getYMax(corners) == corners.maxYVal
--% coercions
SFPolyToUPoly(p) ==
-- 'p' is of type Polynomial, but has only one variable
zero? p => 0
monomial(leadingCoefficient p,totalDegree p) +
SFPolyToUPoly(reductum p)
RNPolyToUPoly(p) ==
-- 'p' is of type Polynomial, but has only one variable
zero? p => 0
monomial(leadingCoefficient p,totalDegree p) +
RNPolyToUPoly(reductum p)
coerceCoefsToSFs(p) ==
-- coefficients of 'p' are coerced to be DoubleFloat's
map(coerce,p)$PolynomialFunctions2(I,SF)
coerceCoefsToRNs(p) ==
-- coefficients of 'p' are coerced to be DoubleFloat's
map(coerce,p)$PolynomialFunctions2(I,RN)
RNtoSF(r) == coerce(r)@SF
RNtoNF(r) == coerce(r)@NF
SFtoNF(x) == convert(x)@NF
--% computation of special points
listPtsOnHorizBdry(pRN,y,y0,xMinNF,xMaxNF) ==
-- strict inequality here: corners on vertical boundary
pointList : L Pt := nil()
ySF := RNtoSF(y0)
f := eval(pRN,y,y0)
roots : L NF := kinte(f,EPSILON)
for root in roots repeat
if (xMinNF < root) and (root < xMaxNF) then
pointList := cons(makePt(NFtoSF root, ySF), pointList)
pointList
listPtsOnVertBdry(pRN,x,x0,yMinNF,yMaxNF) ==
pointList : L Pt := nil()
xSF := RNtoSF(x0)
f := eval(pRN,x,x0)
roots : L NF := kinte(f,EPSILON)
for root in roots repeat
if (yMinNF <= root) and (root <= yMaxNF) then
pointList := cons(makePt(xSF, NFtoSF root), pointList)
pointList
listPtsInRect(points,xMin,xMax,yMin,yMax) ==
pointList : L Pt := nil()
for point in points repeat
xx := first point; yy := second point
if (xMin<=xx) and (xx<=xMax) and (yMin<=yy) and (yy<=yMax) then
pointList := cons(makePt(NFtoSF xx,NFtoSF yy),pointList)
pointList
ptsSuchThat?(points,pred) ==
for point in points repeat
if pred point then return true
false
inRect?(point,xMinNF,xMaxNF,yMinNF,yMaxNF) ==
xx := first point; yy := second point
xMinNF <= xx and xx <= xMaxNF and yMinNF <= yy and yy <= yMaxNF
onHorzSeg?(point,xMinNF,xMaxNF,yNF) ==
xx := first point; yy := second point
yy = yNF and xMinNF <= xx and xx <= xMaxNF
onVertSeg?(point,yMinNF,yMaxNF,xNF) ==
xx := first point; yy := second point
xx = xNF and yMinNF <= yy and yy <= yMaxNF
newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc) ==
xNewNF := xNF + RNtoNF horizInc
xRtNF := max(xNF,xNewNF); xLftNF := min(xNF,xNewNF)
-- ptsSuchThat?(singPts,inRect?(#1,xLftNF,xRtNF,yMinNF,yMaxNF)) =>
foo : L NF -> B := inRect?(#1,xLftNF,xRtNF,yMinNF,yMaxNF)
ptsSuchThat?(singPts,foo) =>
newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc/2::RN)
-- ptsSuchThat?(vtanPts,onVertSeg?(#1,yMinNF,yMaxNF,xNewNF)) =>
goo : L NF -> B := onVertSeg?(#1,yMinNF,yMaxNF,xNewNF)
ptsSuchThat?(vtanPts,goo) =>
newX(vtanPts,singPts,yMinNF,yMaxNF,xNF,xRN,horizInc/2::RN)
xRN + horizInc
newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc) ==
yNewNF := yNF + RNtoNF vertInc
yTopNF := max(yNF,yNewNF); yBotNF := min(yNF,yNewNF)
-- ptsSuchThat?(singPts,inRect?(#1,xMinNF,xMaxNF,yBotNF,yTopNF)) =>
foo : L NF -> B := inRect?(#1,xMinNF,xMaxNF,yBotNF,yTopNF)
ptsSuchThat?(singPts,foo) =>
newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc/2::RN)
-- ptsSuchThat?(htanPts,onHorzSeg?(#1,xMinNF,xMaxNF,yNewNF)) =>
goo : L NF -> B := onHorzSeg?(#1,xMinNF,xMaxNF,yNewNF)
ptsSuchThat?(htanPts,goo) =>
newY(htanPts,singPts,xMinNF,xMaxNF,yNF,yRN,vertInc/2::RN)
yRN + vertInc
--% creation of sketches
makeSketch(p,x,y,xRange,yRange) ==
xMin := lo xRange; xMax := hi xRange
yMin := lo yRange; yMax := hi yRange
-- test input for consistency
xMax <= xMin =>
error "makeSketch: bad range for first variable"
yMax <= yMin =>
error "makeSketch: bad range for second variable"
varList := variables p
# varList > 2 =>
error "makeSketch: polynomial in more than 2 variables"
# varList = 0 =>
error "makeSketch: constant polynomial"
-- polynomial in 1 variable
# varList = 1 =>
(not member?(x,varList)) and (not member?(y,varList)) =>
error "makeSketch: bad variables"
makeOneVarSketch(p,x,y,xMin,xMax,yMin,yMax,first varList)
-- polynomial in 2 variables
(not member?(x,varList)) or (not member?(y,varList)) =>
error "makeSketch: bad variables"
totalDegree p = 1 =>
makeLineSketch(p,x,y,xMin,xMax,yMin,yMax)
-- polynomial is linear in one variable
-- y is a rational function of x
degree(p,y) = 1 =>
makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,y)
-- x is a rational function of y
degree(p,x) = 1 =>
makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,x)
-- the general case
makeGeneralSketch(p,x,y,xMin,xMax,yMin,yMax)
--% special cases
makeOneVarSketch(p,x,y,xMin,xMax,yMin,yMax,var) ==
-- the case where 'p' is a polynomial in only one variable
-- the graph consists of horizontal or vertical lines
if var = x then
minVal := RNtoNF xMin
maxVal := RNtoNF xMax
else
minVal := RNtoNF yMin
maxVal := RNtoNF yMax
lf : L Pt := nil(); rt : L Pt := nil()
bt : L Pt := nil(); tp : L Pt := nil()
htans : L Pt := nil(); vtans : L Pt := nil()
bran : L L Pt := nil()
roots := kinte(p,EPSILON)
sketchRoots : L SF := nil()
for root in roots repeat
if (minVal <= root) and (root <= maxVal) then
sketchRoots := cons(NFtoSF root,sketchRoots)
null sketchRoots =>
[p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
if var = x then
yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
for rootSF in sketchRoots repeat
tp := cons(pt1 := makePt(rootSF,yMaxSF),tp)
bt := cons(pt2 := makePt(rootSF,yMinSF),bt)
branch : L Pt := [pt1,pt2]
bran := cons(branch,bran)
else
xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
for rootSF in sketchRoots repeat
rt := cons(pt1 := makePt(xMaxSF,rootSF),rt)
lf := cons(pt2 := makePt(xMinSF,rootSF),lf)
branch : L Pt := [pt1,pt2]
bran := cons(branch,bran)
[p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
makeLineSketch(p,x,y,xMin,xMax,yMin,yMax) ==
-- the case where p(x,y) = a x + b y + c with a ~= 0, b ~= 0
-- this is a line which is neither vertical nor horizontal
xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
-- determine the coefficients a, b, and c
a := ground(coefficient(p,x,1)) :: SF
b := ground(coefficient(p,y,1)) :: SF
c := ground(coefficient(coefficient(p,x,0),y,0)) :: SF
lf : L Pt := nil(); rt : L Pt := nil()
bt : L Pt := nil(); tp : L Pt := nil()
htans : L Pt := nil(); vtans : L Pt := nil()
branch : L Pt := nil(); bran : L L Pt := nil()
-- compute x coordinate of point on line with y = yMin
xBottom := (- b*yMinSF - c)/a
-- compute x coordinate of point on line with y = yMax
xTop := (- b*yMaxSF - c)/a
-- compute y coordinate of point on line with x = xMin
yLeft := (- a*xMinSF - c)/b
-- compute y coordinate of point on line with x = xMax
yRight := (- a*xMaxSF - c)/b
-- determine which of the above 4 points are in the region
-- to be plotted and list them as a branch
if (xMinSF < xBottom) and (xBottom < xMaxSF) then
bt := cons(pt := makePt(xBottom,yMinSF),bt)
branch := cons(pt,branch)
if (xMinSF < xTop) and (xTop < xMaxSF) then
tp := cons(pt := makePt(xTop,yMaxSF),tp)
branch := cons(pt,branch)
if (yMinSF <= yLeft) and (yLeft <= yMaxSF) then
lf := cons(pt := makePt(xMinSF,yLeft),lf)
branch := cons(pt,branch)
if (yMinSF <= yRight) and (yRight <= yMaxSF) then
rt := cons(pt := makePt(xMaxSF,yRight),rt)
branch := cons(pt,branch)
bran := cons(branch,bran)
[p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
singValBetween?(xCurrent,xNext,xSingList) ==
for xVal in xSingList repeat
(xCurrent < xVal) and (xVal < xNext) => return true
false
segmentInfo(f,lo,hi,botList,topList,singList,minSF,maxSF) ==
repeat
-- 'current' is the smallest element of 'topList' and 'botList'
-- 'currentFrom' records the list from which it was taken
if null topList then
if null botList then
return [segment(lo,hi),hi,nil(),nil()]
else
current := first botList
botList := rest botList
currentFrom := BOTTOM
else
if null botList then
current := first topList
topList := rest topList
currentFrom := TOP
else
bot := first botList
top := first topList
if bot < top then
current := bot
botList := rest botList
currentFrom := BOTTOM
else
current := top
topList := rest topList
currentFrom := TOP
-- 'nxt' is the next smallest element of 'topList'
-- and 'botList'
-- 'nextFrom' records the list from which it was taken
if null topList then
if null botList then
return [segment(lo,hi),hi,nil(),nil()]
else
nxt := first botList
botList := rest botList
nextFrom := BOTTOM
else
if null botList then
nxt := first topList
topList := rest topList
nextFrom := TOP
else
bot := first botList
top := first topList
if bot < top then
nxt := bot
botList := rest botList
nextFrom := BOTTOM
else
nxt := top
topList := rest topList
nextFrom := TOP
if currentFrom = nextFrom then
if singValBetween?(current,nxt,singList) then
return [segment(lo,current),nxt,botList,topList]
else
val := f((nxt - current)/2::SF)
if (val <= minSF) or (val >= maxSF) then
return [segment(lo,current),nxt,botList,topList]
else
if singValBetween?(current,nxt,singList) then
return [segment(lo,current),nxt,botList,topList]
makeRatFcnSketch(p,x,y,xMin,xMax,yMin,yMax,depVar) ==
-- the case where p(x,y) is linear in x or y
-- Thus, one variable is a rational function of the other.
-- Therefore, we may use the 2-dimensional function plotting
-- package. The only problem is determining the intervals on
-- on which the function is to be plotted.
--!! corners: e.g. upper left corner is on graph with y' > 0
factoredP := p :: FR P I
numberOfFactors(factoredP) > 1 =>
error "reducible polynomial" --!! sketch each factor
dpdx := differentiate(p,x)
dpdy := differentiate(p,y)
pRN := coerceCoefsToRNs p
xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
xMinNF := RNtoNF xMin; xMaxNF := RNtoNF xMax
yMinNF := RNtoNF yMin; yMaxNF := RNtoNF yMax
-- 'p' is of degree 1 in the variable 'depVar'.
-- Thus, 'depVar' is a rational function of the other variable.
num := -coefficient(p,depVar,0)
den := coefficient(p,depVar,1)
numUPolySF := SFPolyToUPoly(coerceCoefsToSFs(num))
denUPolySF := SFPolyToUPoly(coerceCoefsToSFs(den))
-- this is the rational function
f : SF -> SF := elt(numUPolySF,#1)/elt(denUPolySF,#1)
-- values of the dependent and independent variables
if depVar = x then
indVarMin := yMin; indVarMax := yMax
indVarMinNF := yMinNF; indVarMaxNF := yMaxNF
indVarMinSF := yMinSF; indVarMaxSF := yMaxSF
depVarMin := xMin; depVarMax := xMax
depVarMinSF := xMinSF; depVarMaxSF := xMaxSF
else
indVarMin := xMin; indVarMax := xMax
indVarMinNF := xMinNF; indVarMaxNF := xMaxNF
indVarMinSF := xMinSF; indVarMaxSF := xMaxSF
depVarMin := yMin; depVarMax := yMax
depVarMinSF := yMinSF; depVarMaxSF := yMaxSF
-- Create lists of critical points.
htanPts := rsolve([p,dpdx],[x,y],EPSILON)
vtanPts := rsolve([p,dpdy],[x,y],EPSILON)
htans := listPtsInRect(htanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
vtans := listPtsInRect(vtanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
-- Create lists which will contain boundary points.
lf : L Pt := nil(); rt : L Pt := nil()
bt : L Pt := nil(); tp : L Pt := nil()
-- Determine values of the independent variable at the which
-- the rational function has a pole as well as the values of
-- the independent variable for which there is a point on the
-- upper or lower boundary.
singList : L SF :=
roots : L NF := kinte(den,EPSILON)
outList : L SF := nil()
for root in roots repeat
if (indVarMinNF < root) and (root < indVarMaxNF) then
outList := cons(NFtoSF root,outList)
sort(#1 < #2,outList)
topList : L SF :=
roots : L NF := kinte(eval(pRN,depVar,depVarMax),EPSILON)
outList : L SF := nil()
for root in roots repeat
if (indVarMinNF < root) and (root < indVarMaxNF) then
outList := cons(NFtoSF root,outList)
sort(#1 < #2,outList)
botList : L SF :=
roots : L NF := kinte(eval(pRN,depVar,depVarMin),EPSILON)
outList : L SF := nil()
for root in roots repeat
if (indVarMinNF < root) and (root < indVarMaxNF) then
outList := cons(NFtoSF root,outList)
sort(#1 < #2,outList)
-- We wish to determine if the graph has points on the 'left'
-- and 'right' boundaries, so we compute the value of the
-- rational function at the lefthand and righthand values of
-- the dependent variable. If the function has a singularity
-- on the left or right boundary, then 'leftVal' or 'rightVal'
-- is given a dummy valuewhich will convince the program that
-- there is no point on the left or right boundary.
denUPolyRN := RNPolyToUPoly(coerceCoefsToRNs(den))
if elt(denUPolyRN,indVarMin) = 0$RN then
leftVal := depVarMinSF - (abs(depVarMinSF) + 1$SF)
else
leftVal := f(indVarMinSF)
if elt(denUPolyRN,indVarMax) = 0$RN then
rightVal := depVarMinSF - (abs(depVarMinSF) + 1$SF)
else
rightVal := f(indVarMaxSF)
-- Now put boundary points on the appropriate lists.
if depVar = x then
if (xMinSF < leftVal) and (leftVal < xMaxSF) then
bt := cons(makePt(leftVal,yMinSF),bt)
if (xMinSF < rightVal) and (rightVal < xMaxSF) then
tp := cons(makePt(rightVal,yMaxSF),tp)
for val in botList repeat
lf := cons(makePt(xMinSF,val),lf)
for val in topList repeat
rt := cons(makePt(xMaxSF,val),rt)
else
if (yMinSF < leftVal) and (leftVal < yMaxSF) then
lf := cons(makePt(xMinSF,leftVal),lf)
if (yMinSF < rightVal) and (rightVal < yMaxSF) then
rt := cons(makePt(xMaxSF,rightVal),rt)
for val in botList repeat
bt := cons(makePt(val,yMinSF),bt)
for val in topList repeat
tp := cons(makePt(val,yMaxSF),tp)
bran : L L Pt := nil()
-- Determine segments on which the rational function is to
-- be plotted.
if (depVarMinSF < leftVal) and (leftVal < depVarMaxSF) then
lo := indVarMinSF
else
if null topList then
if null botList then
return [p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],_
htans,vtans,bran]
else
lo := first botList
botList := rest botList
else
if null botList then
lo := first topList
topList := rest topList
else
bot := first botList
top := first topList
if bot < top then
lo := bot
botList := rest botList
else
lo := top
topList := rest topList
hi := 0$SF -- @#$%^&* compiler
if (depVarMinSF < rightVal) and (rightVal < depVarMaxSF) then
hi := indVarMaxSF
else
if null topList then
if null botList then
error "makeRatFcnSketch: plot domain"
else
hi := last botList
botList := remove(hi,botList)
else
if null botList then
hi := last topList
topList := remove(hi,topList)
else
bot := last botList
top := last topList
if bot > top then
hi := bot
botList := remove(hi,botList)
else
hi := top
topList := remove(hi,topList)
if (depVar = x) then
(minSF := xMinSF; maxSF := xMaxSF)
else
(minSF := yMinSF; maxSF := yMaxSF)
segList : L SEG SF := nil()
repeat
segInfo := segmentInfo(f,lo,hi,botList,topList,singList,_
minSF,maxSF)
segList := cons(segInfo.seg,segList)
lo := segInfo.left
botList := segInfo.lowerVals
topList := segInfo.upperVals
if lo = hi then break
for segment in segList repeat
RFPlot : Plot := plot(f,segment)
curve := first(listBranches(RFPlot))
if depVar = y then
bran := cons(curve,bran)
else
bran := cons(map(swapCoords,curve),bran)
[p,x,y,xMin,xMax,yMin,yMax,[lf,rt,bt,tp],htans,vtans,bran]
--% the general case
makeGeneralSketch(pol,x,y,xMin,xMax,yMin,yMax) ==
--!! corners of region should not be on curve
--!! enlarge region if necessary
factoredPol := pol :: FR P I
numberOfFactors(factoredPol) > 1 =>
error "reducible polynomial" --!! sketch each factor
p := nthFactor(factoredPol,1)
dpdx := differentiate(p,x); dpdy := differentiate(p,y)
xMinNF := RNtoNF xMin; xMaxNF := RNtoNF xMax
yMinNF := RNtoNF yMin; yMaxNF := RNtoNF yMax
-- compute singular points; error if singularities in region
singPts := rsolve([p,dpdx,dpdy],[x,y],EPSILON)
-- ptsSuchThat?(singPts,inRect?(#1,xMinNF,xMaxNF,yMinNF,yMaxNF)) =>
foo : L NF -> B := inRect?(#1,xMinNF,xMaxNF,yMinNF,yMaxNF)
ptsSuchThat?(singPts,foo) =>
error "singular pts in region of sketch"
-- compute critical points
htanPts := rsolve([p,dpdx],[x,y],EPSILON)
vtanPts := rsolve([p,dpdy],[x,y],EPSILON)
critPts := append(htanPts,vtanPts)
-- if there are critical points on the boundary, then enlarge
-- the region, but be sure that the new region does not contain
-- any singular points
hInc : RN := (1/20) * (xMax - xMin)
vInc : RN := (1/20) * (yMax - yMin)
-- if ptsSuchThat?(critPts,onVertSeg?(#1,yMinNF,yMaxNF,xMinNF)) then
foo : L NF -> B := onVertSeg?(#1,yMinNF,yMaxNF,xMinNF)
if ptsSuchThat?(critPts,foo) then
xMin := newX(critPts,singPts,yMinNF,yMaxNF,xMinNF,xMin,-hInc)
xMinNF := RNtoNF xMin
-- if ptsSuchThat?(critPts,onVertSeg?(#1,yMinNF,yMaxNF,xMaxNF)) then
foo : L NF -> B := onVertSeg?(#1,yMinNF,yMaxNF,xMaxNF)
if ptsSuchThat?(critPts,foo) then
xMax := newX(critPts,singPts,yMinNF,yMaxNF,xMaxNF,xMax,hInc)
xMaxNF := RNtoNF xMax
-- if ptsSuchThat?(critPts,onHorzSeg?(#1,xMinNF,xMaxNF,yMinNF)) then
foo : L NF -> B := onHorzSeg?(#1,xMinNF,xMaxNF,yMinNF)
if ptsSuchThat?(critPts,foo) then
yMin := newY(critPts,singPts,xMinNF,xMaxNF,yMinNF,yMin,-vInc)
yMinNF := RNtoNF yMin
-- if ptsSuchThat?(critPts,onHorzSeg?(#1,xMinNF,xMaxNF,yMaxNF)) then
foo : L NF -> B := onHorzSeg?(#1,xMinNF,xMaxNF,yMaxNF)
if ptsSuchThat?(critPts,foo) then
yMax := newY(critPts,singPts,xMinNF,xMaxNF,yMaxNF,yMax,vInc)
yMaxNF := RNtoNF yMax
htans := listPtsInRect(htanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
vtans := listPtsInRect(vtanPts,xMinNF,xMaxNF,yMinNF,yMaxNF)
crits := append(htans,vtans)
-- conversions to DoubleFloats
xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
corners := makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF)
pSF := coerceCoefsToSFs p
dpdxSF := coerceCoefsToSFs dpdx
dpdySF := coerceCoefsToSFs dpdy
delta := min((xMaxSF - xMinSF)/25,(yMaxSF - yMinSF)/25)
err := min(delta/100,PLOTERR/100)
bound : PI := 10
-- compute points on the boundary
pRN := coerceCoefsToRNs(p)
lf : L Pt := listPtsOnVertBdry(pRN,x,xMin,yMinNF,yMaxNF)
rt : L Pt := listPtsOnVertBdry(pRN,x,xMax,yMinNF,yMaxNF)
bt : L Pt := listPtsOnHorizBdry(pRN,y,yMin,xMinNF,xMaxNF)
tp : L Pt := listPtsOnHorizBdry(pRN,y,yMax,xMinNF,xMaxNF)
bdPts : BoundaryPts := [lf,rt,bt,tp]
bran := traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,_
bound,crits,bdPts)
[p,x,y,xMin,xMax,yMin,yMax,bdPts,htans,vtans,bran]
refine(plot,stepFraction) ==
p := plot.poly; x := plot.xVar; y := plot.yVar
dpdx := differentiate(p,x); dpdy := differentiate(p,y)
pSF := coerceCoefsToSFs p
dpdxSF := coerceCoefsToSFs dpdx
dpdySF := coerceCoefsToSFs dpdy
xMin := plot.minXVal; xMax := plot.maxXVal
yMin := plot.minYVal; yMax := plot.maxYVal
xMinSF := RNtoSF xMin; xMaxSF := RNtoSF xMax
yMinSF := RNtoSF yMin; yMaxSF := RNtoSF yMax
corners := makeCorners(xMinSF,xMaxSF,yMinSF,yMaxSF)
pSF := coerceCoefsToSFs p
dpdxSF := coerceCoefsToSFs dpdx
dpdySF := coerceCoefsToSFs dpdy
delta :=
stepFraction * min((xMaxSF - xMinSF)/25,(yMaxSF - yMinSF)/25)
err := min(delta/100,PLOTERR/100)
bound : PI := 10
crits := append(plot.hTanPts,plot.vTanPts)
bdPts := plot.bdryPts
bran := traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,_
bound,crits,bdPts)
htans := plot.hTanPts; vtans := plot.vTanPts
[p,x,y,xMin,xMax,yMin,yMax,bdPts,htans,vtans,bran]
traceBranches(pSF,dpdxSF,dpdySF,x,y,corners,delta,err,bound,_
crits,bdPts) ==
-- for boundary points, trace curve from boundary to boundary
-- add the branch to the list of branches
-- update list of boundary points by deleting first and last
-- points on this branch
-- update list of critical points by deleting any critical
-- points which were plotted
lf := bdPts.left; rt := bdPts.right
tp := bdPts.top ; bt := bdPts.bottom
bdry := append(append(lf,rt),append(bt,tp))
bran : L L Pt := nil()
while not null bdry repeat
pt := first bdry
p0 := dummyFirstPt(pt,dpdxSF,dpdySF,x,y,lf,rt,bt,tp)
segInfo := listPtsOnSegment(pSF,dpdxSF,dpdySF,x,y,p0,pt,_
corners,delta,err,bound,crits,bdry)
bran := cons(first segInfo,bran)
crits := second segInfo
bdry := third segInfo
-- trace loops beginning and ending with critical points
-- add the branch to the list of branches
-- update list of critical points by deleting any critical
-- points which were plotted
while not null crits repeat
pt := first crits
segInfo := listPtsOnLoop(pSF,dpdxSF,dpdySF,x,y,pt,_
corners,delta,err,bound,crits,bdry)
bran := cons(first segInfo,bran)
crits := second segInfo
bran
dummyFirstPt(p1,dpdxSF,dpdySF,x,y,lf,rt,bt,tp) ==
-- The function 'computeNextPt' requires 2 points, p0 and p1.
-- When computing the second point on a branch which starts
-- on the boundary, we use the boundary point as p1 and the
-- 'dummy' point returned by this function as p0.
x1 := xCoord p1; y1 := yCoord p1
zero := 0$SF; one := 1$SF
px := ground(eval(dpdxSF,[x,y],[x1,y1]))
py := ground(eval(dpdySF,[x,y],[x1,y1]))
if px * py < zero then -- positive slope at p1
member?(p1,lf) or member?(p1,bt) =>
makePt(x1 - one,y1 - one)
makePt(x1 + one,y1 + one)
else
member?(p1,lf) or member?(p1,tp) =>
makePt(x1 - one,y1 + one)
makePt(x1 + one,y1 - one)
listPtsOnSegment(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
delta,err,bound,crits,bdry) ==
-- p1 is a boundary point; p0 is a 'dummy' point
bdry := remove(p1,bdry)
pointList : L Pt := [p1]
ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
delta,err,bound,crits,bdry)
p2 := ptInfo.newPt
ptInfo.type = BDRY =>
bdry := remove(p2,bdry)
pointList := cons(p2,pointList)
[pointList,crits,bdry]
if ptInfo.type = CRIT then crits := remove(p2,crits)
pointList := cons(p2,pointList)
repeat
pt0 := second pointList; pt1 := first pointList
ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,pt0,pt1,corners,_
delta,err,bound,crits,bdry)
p2 := ptInfo.newPt
ptInfo.type = BDRY =>
bdry := remove(p2,bdry)
pointList := cons(p2,pointList)
return [pointList,crits,bdry]
if ptInfo.type = CRIT then crits := remove(p2,crits)
pointList := cons(p2,pointList)
--!! delete next line (compiler bug)
[pointList,crits,bdry]
listPtsOnLoop(pSF,dpdxSF,dpdySF,x,y,p1,corners,_
delta,err,bound,crits,bdry) ==
x1 := xCoord p1; y1 := yCoord p1
px := ground(eval(dpdxSF,[x,y],[x1,y1]))
py := ground(eval(dpdySF,[x,y],[x1,y1]))
p0 := makePt(x1 - 1$SF,y1 - 1$SF)
pointList : L Pt := [p1]
ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
delta,err,bound,crits,bdry)
p2 := ptInfo.newPt
ptInfo.type = BDRY =>
error "boundary reached while on loop"
if ptInfo.type = CRIT then
p1 = p2 =>
error "first and second points on loop are identical"
crits := remove(p2,crits)
pointList := cons(p2,pointList)
repeat
pt0 := second pointList; pt1 := first pointList
ptInfo := computeNextPt(pSF,dpdxSF,dpdySF,x,y,pt0,pt1,corners,_
delta,err,bound,crits,bdry)
p2 := ptInfo.newPt
ptInfo.type = BDRY =>
error "boundary reached while on loop"
if ptInfo.type = CRIT then
crits := remove(p2,crits)
p1 = p2 =>
pointList := cons(p2,pointList)
return [pointList,crits,bdry]
pointList := cons(p2,pointList)
--!! delete next line (compiler bug)
[pointList,crits,bdry]
computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
delta,err,bound,crits,bdry) ==
-- p0=(x0,y0) and p1=(x1,y1) are the last two points on the curve.
-- The function computes the next point on the curve.
-- The function determines if the next point is a critical point
-- or a boundary point.
-- The function returns a record of the form
-- Record(newPt:Pt,type:String).
-- If the new point is a boundary point, then 'type' is
-- "boundary point" and 'newPt' is a boundary point to be
-- deleted from the list of boundary points yet to be plotted.
-- Similarly, if the new point is a critical point, then 'type' is
-- "critical point" and 'newPt' is a critical point to be
-- deleted from the list of critical points yet to be plotted.
-- If the new point is neither a critical point nor a boundary
-- point, then 'type' is "nothing in particular".
xMinSF := getXMin corners; xMaxSF := getXMax corners
yMinSF := getYMin corners; yMaxSF := getYMax corners
x0 := xCoord p0; y0 := yCoord p0
x1 := xCoord p1; y1 := yCoord p1
px := ground(eval(dpdxSF,[x,y],[x1,y1]))
py := ground(eval(dpdySF,[x,y],[x1,y1]))
-- let m be the slope of the tangent line at p1
-- if |m| < 1, we will increment the x-coordinate by delta
-- (indicated by 'incVar = x'), find an approximate
-- y-coordinate using the tangent line, then find the actual
-- y-coordinate using a Newton iteration
if abs(py) > abs(px) then
incVar0 := incVar := x
deltaX := (if x1 > x0 then delta else -delta)
x2Approx := x1 + deltaX
y2Approx := y1 + (-px/py)*deltaX
-- if |m| >= 1, we interchange the roles of the x- and y-
-- coordinates
else
incVar0 := incVar := y
deltaY := (if y1 > y0 then delta else -delta)
x2Approx := x1 + (-py/px)*deltaY
y2Approx := y1 + deltaY
lookingFor := NADA
-- See if (x2Approx,y2Approx) is out of bounds.
-- If so, find where the line segment connecting (x1,y1) and
-- (x2Approx,y2Approx) intersects the boundary and use this
-- point as (x2Approx,y2Approx).
-- If the resulting point is on the left or right boundary,
-- we will now consider x as the 'incremented variable' and we
-- will compute the y-coordinate using a Newton iteration.
-- Similarly, if the point is on the top or bottom boundary,
-- we will consider y as the 'incremented variable' and we
-- will compute the x-coordinate using a Newton iteration.
if x2Approx >= xMaxSF then
incVar := x
lookingFor := BDRY
x2Approx := xMaxSF
y2Approx := y1 + (-px/py)*(x2Approx - x1)
else
if x2Approx <= xMinSF then
incVar := x
lookingFor := BDRY
x2Approx := xMinSF
y2Approx := y1 + (-px/py)*(x2Approx - x1)
if y2Approx >= yMaxSF then
incVar := y
lookingFor := BDRY
y2Approx := yMaxSF
x2Approx := x1 + (-py/px)*(y2Approx - y1)
else
if y2Approx <= yMinSF then
incVar := y
lookingFor := BDRY
y2Approx := yMinSF
x2Approx := x1 + (-py/px)*(y2Approx - y1)
-- set xLo = min(x1,x2Approx), xHi = max(x1,x2Approx)
-- set yLo = min(y1,y2Approx), yHi = max(y1,y2Approx)
if x1 < x2Approx then
xLo := x1
xHi := x2Approx
else
xLo := x2Approx
xHi := x1
if y1 < y2Approx then
yLo := y1
yHi := y2Approx
else
yLo := y2Approx
yHi := y1
-- check for critical points (x*,y*) with x* between
-- x1 and x2Approx or y* between y1 and y2Approx
-- store values of x2Approx and y2Approx
x2Approxx := x2Approx
y2Approxx := y2Approx
-- xPointList will contain all critical points (x*,y*)
-- with x* between x1 and x2Approx
xPointList : L Pt := nil()
-- yPointList will contain all critical points (x*,y*)
-- with y* between y1 and y2Approx
yPointList : L Pt := nil()
for pt in crits repeat
xx := xCoord pt; yy := yCoord pt
-- if x1 = x2Approx, then p1 is a point with horizontal
-- tangent line
-- in this case, we don't want critical points with
-- x-coordinate x1
if xx = x2Approx and not (xx = x1) then
if min(abs(yy-yLo),abs(yy-yHi)) < delta then
xPointList := cons(pt,xPointList)
if ((xLo < xx) and (xx < xHi)) then
if min(abs(yy-yLo),abs(yy-yHi)) < delta then
xPointList := cons(pt,nil())
x2Approx := xx
if xx < x1 then xLo := xx else xHi := xx
-- if y1 = y2Approx, then p1 is a point with vertical
-- tangent line
-- in this case, we don't want critical points with
-- y-coordinate y1
if yy = y2Approx and not (yy = y1) then
yPointList := cons(pt,yPointList)
if ((yLo < yy) and (yy < yHi)) then
if min(abs(xx-xLo),abs(xx-xHi)) < delta then
yPointList := cons(pt,nil())
y2Approx := yy
if yy < y1 then yLo := yy else yHi := yy
-- points in both xPointList and yPointList
if (not null xPointList) and (not null yPointList) then
xPointList = yPointList =>
-- this implies that the lists have only one point
incVar := incVar0
if incVar = x then
y2Approx := y1 + (-px/py)*(x2Approx - x1)
else
x2Approx := x1 + (-py/px)*(y2Approx - y1)
lookingFor := CRIT -- proceed
incVar0 = x =>
-- first try Newton iteration with 'y' as incremented variable
x2Temp := x1 + (-py/px)*(y2Approx - y1)
f := SFPolyToUPoly(eval(pSF,y,y2Approx))
x2New := newtonApprox(f,x2Temp,err,bound)
x2New case "failed" =>
y2Approx := y1 + (-px/py)*(x2Approx - x1)
incVar := x
lookingFor := CRIT -- proceed
y2Temp := y1 + (-px/py)*(x2Approx - x1)
f := SFPolyToUPoly(eval(pSF,x,x2Approx))
y2New := newtonApprox(f,y2Temp,err,bound)
y2New case "failed" =>
return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
abs((x2Approx-x1)/2),err,bound,crits,bdry)
pt1 := makePt(x2Approx,y2New :: SF)
pt2 := makePt(x2New :: SF,y2Approx)
critPt1 := findPtOnList(pt1,crits)
critPt2 := findPtOnList(pt2,crits)
(critPt1 case "failed") and (critPt2 case "failed") =>
abs(x2Approx - x1) > abs(x2Temp - x1) =>
return [pt1,NADA]
return [pt2,NADA]
(critPt1 case "failed") =>
return [critPt2::Pt,CRIT]
(critPt2 case "failed") =>
return [critPt1::Pt,CRIT]
abs(x2Approx - x1) > abs(x2Temp - x1) =>
return [critPt2::Pt,CRIT]
return [critPt1::Pt,CRIT]
y2Temp := y1 + (-px/py)*(x2Approx - x1)
f := SFPolyToUPoly(eval(pSF,x,x2Approx))
y2New := newtonApprox(f,y2Temp,err,bound)
y2New case "failed" =>
x2Approx := x1 + (-py/px)*(y2Approx - y1)
incVar := y
lookingFor := CRIT -- proceed
x2Temp := x1 + (-py/px)*(y2Approx - y1)
f := SFPolyToUPoly(eval(pSF,y,y2Approx))
x2New := newtonApprox(f,x2Temp,err,bound)
x2New case "failed" =>
return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
abs((y2Approx-y1)/2),err,bound,crits,bdry)
pt1 := makePt(x2Approx,y2New :: SF)
pt2 := makePt(x2New :: SF,y2Approx)
critPt1 := findPtOnList(pt1,crits)
critPt2 := findPtOnList(pt2,crits)
(critPt1 case "failed") and (critPt2 case "failed") =>
abs(y2Approx - y1) > abs(y2Temp - y1) =>
return [pt2,NADA]
return [pt1,NADA]
(critPt1 case "failed") =>
return [critPt2::Pt,CRIT]
(critPt2 case "failed") =>
return [critPt1::Pt,CRIT]
abs(y2Approx - y1) > abs(y2Temp - y1) =>
return [critPt1::Pt,CRIT]
return [critPt2::Pt,CRIT]
if (not null xPointList) and (null yPointList) then
y2Approx := y1 + (-px/py)*(x2Approx - x1)
incVar0 = x =>
incVar := x
lookingFor := CRIT -- proceed
f := SFPolyToUPoly(eval(pSF,x,x2Approx))
y2New := newtonApprox(f,y2Approx,err,bound)
y2New case "failed" =>
x2Approx := x2Approxx
y2Approx := y2Approxx -- proceed
pt := makePt(x2Approx,y2New::SF)
critPt := findPtOnList(pt,crits)
critPt case "failed" =>
return [pt,NADA]
return [critPt :: Pt,CRIT]
if (null xPointList) and (not null yPointList) then
x2Approx := x1 + (-py/px)*(y2Approx - y1)
incVar0 = y =>
incVar := y
lookingFor := CRIT -- proceed
f := SFPolyToUPoly(eval(pSF,y,y2Approx))
x2New := newtonApprox(f,x2Approx,err,bound)
x2New case "failed" =>
x2Approx := x2Approxx
y2Approx := y2Approxx -- proceed
pt := makePt(x2New::SF,y2Approx)
critPt := findPtOnList(pt,crits)
critPt case "failed" =>
return [pt,NADA]
return [critPt :: Pt,CRIT]
if incVar = x then
x2 := x2Approx
f := SFPolyToUPoly(eval(pSF,x,x2))
y2New := newtonApprox(f,y2Approx,err,bound)
y2New case "failed" =>
return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
abs((x2-x1)/2),err,bound,crits,bdry)
y2 := y2New :: SF
else
y2 := y2Approx
f := SFPolyToUPoly(eval(pSF,y,y2))
x2New := newtonApprox(f,x2Approx,err,bound)
x2New case "failed" =>
return computeNextPt(pSF,dpdxSF,dpdySF,x,y,p0,p1,corners,_
abs((y2-y1)/2),err,bound,crits,bdry)
x2 := x2New :: SF
pt := makePt(x2,y2)
--!! check that 'pt' is not out of bounds
-- check if you've gotten a critical or boundary point
lookingFor = NADA =>
[pt,lookingFor]
lookingFor = BDRY =>
bdryPt := findPtOnList(pt,bdry)
bdryPt case "failed" =>
error "couldn't find boundary point"
[bdryPt :: Pt,BDRY]
critPt := findPtOnList(pt,crits)
critPt case "failed" =>
[pt,NADA]
[critPt :: Pt,CRIT]
--% Newton iterations
newtonApprox(f,a0,err,bound) ==
-- Newton iteration to approximate a root of the polynomial 'f'
-- using an initial approximation of 'a0'
-- Newton iteration terminates when consecutive approximations
-- are within 'err' of each other
-- returns "failed" if this has not been achieved after 'bound'
-- iterations
Df := differentiate f
oldApprox := a0
newApprox := a0 - elt(f,a0)/elt(Df,a0)
i : PI := 1
while abs(newApprox - oldApprox) > err repeat
i = bound => return "failed"
oldApprox := newApprox
newApprox := oldApprox - elt(f,oldApprox)/elt(Df,oldApprox)
i := i+1
newApprox
--% graphics output
listBranches(acplot) == acplot.branches
--% terminal output
coerce(acplot:%) ==
pp := acplot.poly :: OUT
xx := acplot.xVar :: OUT
yy := acplot.yVar :: OUT
xLo := acplot.minXVal :: OUT
xHi := acplot.maxXVal :: OUT
yLo := acplot.minYVal :: OUT
yHi := acplot.maxYVal :: OUT
zip := message(" = 0")
com := message(", ")
les := message(" <= ")
l : L OUT :=
[pp,zip,com,xLo,les,xx,les,xHi,com,yLo,les,yy,les,yHi]
f : L OUT := nil()
for branch in acplot.branches repeat
ll : L OUT := [p :: OUT for p in branch]
f := cons(vconcat ll,f)
ff := vconcat(hconcat l,vconcat f)
vconcat(message "ACPLOT",ff)
@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>
<<package REALSOLV RealSolvePackage>>
<<domain ACPLOT PlaneAlgebraicCurvePlot>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}
|