1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
%% Oh Emacs, this is a -*- sh -*- script, despite appearance.
\documentclass[12pt]{article}
\usepackage{axiom}
\usepackage[latin1]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fancyvrb}
\usepackage{pslatex}
\usepackage{url}
\newcommand{\email}[1]{\url{#1}}
\CustomVerbatimEnvironment{chunk}{Verbatim}{frame=none,fontsize=\small}
\def\nwendcode{\endtrivlist \endgroup}
\let\nwdocspar=\par
\let\nowebsize=\small
\title{The Toplevel \File{configure.ac} Pamphlet}
\author{Gabriel Dos~Reis}
\begin{document}
\maketitle
\begin{abstract}
This pamphlet details the configuration process of setting up
\Tool{OpenAxiom} for build from source codes.
It also explains general dependencies on external tools.
The configuration process scrutinizes the build, host, and target
environments, and finally instantiates \File{Makefile}s for building
\Tool{OpenAxiom} interpreter, compiler, libraries, and auxiliary tools
where appropriate.
\end{abstract}
\section{Introduction}
\label{sec:intro}
This is the top-level \Tool{Autoconf} description that sets up the
minimum environment for building \Tool{OpenAxiom}. This effort
strives for describing the build machinery at a sufficiently abstract
level that
enables interoperability with existing conventional frameworks, \eg{}
the GNU build framework.
The task is compounded by the fact that the existing \Tool{OpenAxiom} system
is complex and very poorly documented, with blatantly conflicting or
questionable codes.
The \Tool{OpenAxiom} system is written for the most part in Lisp, or
thereof. That in itself is a great source of portability
problems\footnote{even after half a century of existence},
let alone issues related to insulation from mainstream
development tools, dependence on particular Lisp implementation details, etc.
A tiny part of it, mainly the interface with host operating system, is
written in the C programming language. That does not improve on the
portability problems. Fortunately, there are well-supported,
widely used, widely available, well tested tools supporting
C-derived development environments across platforms. The GNU
\Tool{Autotools} being one of them. For the moment, we only make use of
the \Tool{Autoconf} component. This build machinery does not
use \Tool{Automake} and \Tool{Libtool}. People intending to modify
this part of the build machinery are expected to be familiar with
\Tool{Autotconf}.
The \File{Makefile} pamphlets that compose the build machinery are
written in a way that abstracts platform idiosyncracies into
parameters. The purpose of the \File{configure.ac} script is to
find values for those parameters, on a given platform, necessary to
instantiate the \File{Makefile}s, and therefore to set up a concrete
build machinery. And that task must be accomplished portably.
\section{Generalities on build instantiations}
\subsection{Two actors}
The instantiation of the abstract build machinery description requires
that we gather information from two platforms:
\begin{enumerate}
\item the \emph{build platform}, and
\item the \emph{host platform}.
\end{enumerate}
The build platform is where we build the system, \eg{} where
the \File{configure} script is executed. The host platform
is where \Tool{OpenAxiom} will run. Note that in full generality, there is
a third platform: the \emph{target platform}. It is the plaform for which
we are building the system.
For typical build instantiations, those three platforms are the same: we
call that a \emph{native build instantiation} or just \emph{native build}.
The OpenAxiom system only support native build at the moment, due to its
dependence on \Tool{GCL} which supports only native build.
To facilitate the porting of programs across platforms, the GNU build
system has standardized on designation of platforms, called
\emph{configuration names}. A configuration name used to be
made of three parts\footnote{hence the term \emph{canonical triplet} in
earlier versions of \Tool{Autoconf}}:
\textsl{cpu--vendor--os}. Examples are
[[i686-pc-linux-gnu]], or [[sparc-sun-solaris2.8]].
The \textsl{cpu}
part usually designates the type of processor used on the platform.
Examples are [[i686]], or [[sparc]], or [[x86_64]].
The \textsl{vendor} part formally designates the manufacturer of
the platform. In many cases it is simply [[unknown]]. However,
in specific cases, you can see the name of a workstation vendor such
as [[sun]], or [[pc]] for an IBM PC compatible system.
The \textsl{os} part can be either \textsl{system} (such as [[solaris2.8]])
or \textsl{kernel--system} (such as [[linux-gnu]]).
Here is how we get the canonical names for the above three platforms:
<<host build target platfoms>>=
AC_CANONICAL_SYSTEM
open_axiom_installdir=$libdir/open-axiom/$target/$PACKAGE_VERSION
AC_SUBST(open_axiom_installdir)
@
After that call, the configuration names of the three platforms
are available in the shell variables [[build]], [[host]], and [[target]].
\subsubsection{Cross build}
As we said earlier, a native build instantiation is one where all
[[build]], [[host]], and [[target]] have the same value. However,
when porting programs to other platforms, it is not always possible
to do a native build --- either because all the tools are not
available on that machine, or because it is much more convenient to
build the software on a faster machine. Both situations are quite
common.
Those considerations bring us to the notion of cross build
instantiation (also called cross compilation).
We say that the build instantiation is a \emph{cross build} when
the build platform is different from the target platform; \eg{}, when
[[build]] $\neq$ [[target]].
For the moment, the \Tool{OpenAxiom} base source code is written
in a way that does not support cross build. However, we do
want to make cross build possible; consequently we issue
a warning when we detect attempt at cross build:
<<host build target platfoms>>=
if test $build != $target; then
AC_MSG_WARN([Cross build is not supported.])
AC_MSG_WARN([Please notify open-axiom-devel@open-axiom.org if you succeed.])
fi
@
Note that we do not stop the configuration process because we do seek
contributions for cross build support.
Note that the shell variable [[cross_compiling]],
set by the \Tool{Autoconf} macro [[AC_PROG_CC]], indicates whether
the C compiler used is a cross compiler.
\subsubsection{Canadian cross}
As we said previously, most software don't care about the target
platform. But compilers do. And \Tool{OpenAxiom} does because, among
other things, it uses Lisp and C compilers, and it provides a Spad compiler.
Another type of build instantiation arises when the host platform
is different from the target platform. The resulting compiler
is called a \emph{cross compiler}. Please note the distinction here:
a compiler that is cross compiled with [[host]] $=$ [[target]] is
not a cross compiler; it is a \emph{native compiler}.
A cross compiler is one with [[host]] $\neq$ [[target]].
The type of the compiler should not be confused with the type of the
build instantiation. It perfectly makes sense to have a build
instantiation that cross builds a cross-compiler, \ie{} all three
platforms are different: This is called \emph{Canadian cross}.
The \Tool{OpenAxiom} system does not that support that level of
sophistication yet. Although we could test for Canadian cross build
at this point, we delay that check for when we look for a C compiler.
\subsection{Directories for the build instantiation}
Although \Tool{OpenAxiom} does not support cross build yet, let
alone Canadian cross, we want to make sure that we do not write
the build machinery in a way that actively unsupports
cross build. Consequently, in the build tree, we sequester
tools that we build and use on the build platform,
in sub-directories different from others.
<<host build target platfoms>>=
## Where tools for the build platform are sequestered
axiom_build_sharedir=$axiom_builddir/share
@
\section{Configuration options}
\label{sec:config-options}
We strive for making \Tool{OpenAxiom}'s build system integrate as seamlessly as
possibly into the standard GNU build framework.
\subsection{Standard options}
\label{sec:config-options:std}
At the moment, we honor the following options:
\begin{description}
\item \verb!--prefix!:
By default, \Tool{OpenAxiom}'s build system will install files
in ``\File{/usr/local}''. However, you
can select a different location prefix using this option.
\item \verb!--with-x!:
\item \verb!--x-includes=DIR!
\item \verb!--x-libraries=DIR!
\item \verb!--help!
\item \verb!--version!
\end{description}
\subsection{\Tool{OpenAxiom}-specific options}
\label{sec:config-options:axiom-specific}
\begin{description}
\item \verb!--enable-gcl!:
\Tool{OpenAxiom} needs an implementation of Lisp to support its
runtime system. At the moment, GNU Common Lisp (\Tool{GCL} for short)
is used. This options instructs \Tool{OpenAxiom} to build its own copy
of \Tool{GCL}. Use \verb!--disable-gcl! to prevent OpenAxiom
from building \Tool{GCL}.
\item \verb!--with-lisp=L!:
instructs \Tool{OpenAxiom} to use the Lisp image [[L]] for its
runtime platform.
\item \verb!--enable-checking!:
instructs \Tool{OpenAxiom}'s Lisp image to perform runtime checking
for generated Lisp codes.
\end{description}
\section{Basic Setup}
\label{sec:basic-setup}
\subsection{\Tool{Autoconf} Initialization}
\label{sec:basic-setup:init}
The \Tool{Autoconf} machinery needs to be initialized with several pieces of
information:
\begin{itemize}
\item the \emph{name} of the system --- ``OpenAxiom 1.2.0''
\item its \emph{version}. I choose to use the date of last checkin.
It should probably include the revision number so as to
unambiguously identify which \Tool{OpenAxiom} flavour du jour is being
built;
\item and where to send feedback, \emph{e.g.} bug reports. At the moment,
we use
the \email{open-axiom-devel} list. That could change in the future if
we reach a high volume traffic. For the moment, we don't seem to
suffer from traffic...
\end{itemize}
<<Autoconf init>>=
sinclude(config/open-axiom.m4)
sinclude(config/aclocal.m4)
AC_INIT([OpenAxiom], [1.4.0-2010-08-07],
[open-axiom-bugs@lists.sf.net])
@
\Tool{Autoconf} needs some auxilary files that are present in the
sub-directory \File{config}:
<<Autoconf init>>=
AC_CONFIG_AUX_DIR(config)
AC_CONFIG_MACRO_DIR(config)
@
Not all platforms present the same operating system API to applications.
For the part of \Tool{OpenAxiom} written in the C programming language, we
can collect, in a single file, variabilities in operating system
API in form of C preprocessor macros. That file is for the most part
automatically generated by \Tool{Autoheader}.
<<Autoconf init>>=
AC_CONFIG_HEADERS([config/openaxiom-c-macros.h])
@
Note that at configuration time, \Tool{configure} will instantiate a
file \File{config/openaxiom-c-macros.h} in the directory [[$(top_builddir)]],
appropriate for all C sub-parts of \Tool{OpenAxiom} to include.
Notice that since we don't use Automake (yet), we don't initialize
the Automake subsystem.
<<Autoconf init>>=
# AM_INIT_AUTOMAKE([foreign])
@
We require Autoconf $2.62$ or higher from the developer part. Please,
note that this is no requirement on the user build environment. All,
it means is that if someone makes changes to the current \File{configure.ac}
file, that someone needs to have Autoconf $2.62$ or higher to process this
file in order to regenerate \File{configure}.
<<Autoconf init>>=
AC_PREREQ([2.62])
@
\subsection{Source tree sanity check}
\label{sec:basic-setup:sanity-check}
The \Tool{Autoconf} system implements a very basic, simple-minded,
sanity check
whereby it will refuse to run \File{configure} if the source tree does
not contain a specified file, that serves a witness for a bona fide source
tree. Here, we use \File{Makefile.pamphlet} from the \File{src}
subdirectory.
<<sanity check>>=
AC_CONFIG_SRCDIR(src/Makefile.pamphlet)
@
\subsubsection{Instantiating configuration files}
<<instantiate config files>>=
OPENAXIOM_MAKEFILE([Makefile])
OPENAXIOM_MAKEFILE([src/Makefile])
OPENAXIOM_MAKEFILE([src/lib/Makefile])
OPENAXIOM_MAKEFILE([src/hyper/Makefile])
OPENAXIOM_MAKEFILE([src/driver/Makefile])
OPENAXIOM_MAKEFILE([src/lisp/Makefile])
OPENAXIOM_MAKEFILE([src/boot/Makefile])
OPENAXIOM_MAKEFILE([src/interp/Makefile])
OPENAXIOM_MAKEFILE([src/share/Makefile])
OPENAXIOM_MAKEFILE([src/algebra/Makefile])
OPENAXIOM_MAKEFILE([src/input/Makefile])
OPENAXIOM_MAKEFILE([src/etc/Makefile])
OPENAXIOM_MAKEFILE([src/doc/Makefile])
AC_CONFIG_FILES([src/hyper/presea], [chmod +x src/hyper/presea])
## We now generate the "document" script and support files at configure time.
## We put them in the build directory because they are intended to be
## build support utils only.
AC_CONFIG_FILES(build/scripts/document:$srcdir/src/scripts/document.in, \
[chmod +x build/scripts/document])
AC_OUTPUT
## Generate rules to extrad SPAD type definitions from pamphlets.
echo -n "extracting list of SPAD type definitions..."
egrep '@<<(category|domain|package) .*>>=' \
$srcdir/src/algebra/*.spad.pamphlet \
| sort | uniq | \
while IFS=':' read spad_file chunk_desc; do
chunk_desc=`echo $chunk_desc | sed -e 's,@<<,,' -e 's,>>=,,'`
set $chunk_desc; spad_abbrev=$2
cat >> src/algebra/tmp-extract-spad.mk <<EOF
$spad_abbrev.spad: \$(srcdir)/`basename $spad_file` ; \
@\$(axiom_build_document) --output=\$@.tmp --tangle="$chunk_desc" \$< && \
\$(top_confdir)/move-if-change \$@.tmp \$@
EOF
done
echo done
$srcdir/config/move-if-change \
src/algebra/tmp-extract-spad.mk src/algebra/extract-spad.mk
@
\section{configure.ac}
<<*>>=
<<Autoconf init>>
<<sanity check>>
<<host build target platfoms>>
## Accumulate list of utils needed for the build platform
## It is vital that noweb is present in the build environement.
oa_all_prerequisites=
AC_SUBST(oa_all_prerequisites)
OPENAXIOM_HOST_COMPILERS
OPENAXIOM_GCL_HACKS
OPENAXIOM_HOST_DATA_PROPERTIES
OPENAXIOM_DYNAMIC_MODULE_SUPPORT
OPENAXIOM_BUILD_TOOLS
OPENAXIOM_LISP_FLAGS
OPENAXIOM_FILE_EXTENSIONS
OPENAXIOM_BUILD_OPTIONS
OPENAXIOM_HOST_PROGS
axiom_src_subdirs="lib hyper lisp boot interp share algebra input etc doc"
AC_SUBST(axiom_src_subdirs)
OPENAXIOM_CHECK_CORE_SUPPORT
OPENAXIOM_CHECK_IO
OPENAXIOM_CHECK_GRAPHICS
OPENAXIOM_FFI_TYPE_TABLE
OPENAXIOM_GCL_BUILD_OPTIONS
OPENAXIOM_CHECK_MISC
<<instantiate config files>>
echo "Type '${MAKE}' (without quotes) to build OpenAxiom"
@
\section{A note about comments}
\label{sec:comment}
This is a pamphlet file. That means the source code embedded here
are first extracted into a form (\File{configure.ac}) digestible by
\Tool{Autoconf}, which in turn produces the end-user \File{configure}
script run for setting up the build.
\Tool{Autoconf} supports two kinds of comments:
\begin{enumerate}
\item [[dnl]] style, and
\item [[#]] style.
\end{enumerate}
Comments introduced with [[dnl]] are copied verbatim to the generated
\File{configure.ac}; however, do not appear in the \File{configure}
output file. They are for \Tool{Autoconf} consumption only --- and that
of the humans reading \File{configure.ac} (ideally, there should be none).
Comments starting with [[#]] appear verbatim in both \File{configure.ac}
and \File{configure} files. Because this is a pamphlet file, there almost
never is a need to use the [[dnl]]-style comment.
Consequently, \Tool{Autoconf} comments in this file should be
of [[#]]-style form. Such comments can be of value to the occasional
poor masochist who will be debugging the generated \File{configure}.
\end{document}
|