// Copyright (C) 2010, Gabriel Dos Reis. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // // - Redistributions in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in // the documentation and/or other materials provided with the // distribution. // // - Neither the name of The Numerical Algorithms Group Ltd. nor the // names of its contributors may be used to endorse or promote products // derived from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED // TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A // PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER // OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // --% Author: Gabriel Dos Reis. #include #include #include #include namespace OpenAxiom { namespace Sexpr { std::ostream& operator<<(std::ostream& os, const Token& t) { switch (t.type) { case Token::dot: os << "DOT"; break; case Token::comma: os << "COMMA"; break; case Token::open_paren: os << "OPEN_PAREN"; break; case Token::close_paren: os << "CLOSE_PAREN"; break; case Token::apostrophe: os << "APOSTROPHE"; break; case Token::backquote: os << "BACKQUOTE"; break; case Token::backslash: os << "BACKSLASH"; break; case Token::sharp_open_paren: os << "SHARP_OPEN_PAREN"; break; case Token::sharp_apostrophe: os << "SHARP_APOSTROPHE"; break; case Token::sharp_colon: os << "SHARP_COLON"; break; case Token::integer: os << "INTEGER"; break; case Token::character: os << "CHARACTER"; break; case Token::string: os << "STRING"; break; case Token::identifier: os << "IDENTIFIER"; break; case Token::sharp_integer_sharp: os << "SHARP_INTEGER_SHARP"; break; case Token::sharp_integer_equal: os << "SHARP_INTEGER_EQUAL"; break; default: os << "UNKNOWN"; break; } os << '('; if (t.lexeme != 0) { os << '"'; std::copy(t.lexeme->begin(), t.lexeme->end(), std::ostream_iterator(os)); os << '"'; } else os << ""; return os << ')'; } // Return true if character `c' introduces a blank. static bool is_blank(char c) { return c == ' ' or c == '\t' or c == '\v' or c == '\n' or c == '\f' or c == '\r'; } // Return true if the character `c' introduces a delimiter. static bool is_delimiter(char c) { return is_blank(c) or c == '(' or c == ')' or c == '\'' or c == '`' or c == '\\' or c == '#'; } // Move `cur' past all consecutive blank characters, and // return the new position. static const char* skip_blank(const char*& cur, const char* end) { while (cur < end and is_blank(*cur)) ++cur; return cur; } // Move `cur' until a word boundary is reached. static const char* skip_to_word_boundary(const char*& cur, const char* end) { while (cur < end and not is_delimiter(*cur)) ++cur; return cur; } // Move `cur' one-past a non-esacaped character `c'. // Return true if the character was seen. static bool skip_to_nonescaped_char(const char*& cur, const char* end, char c) { for (; cur < end; ++cur) if (cur[0] == c and cur[-1] != '\\') { ++cur; return true; } return false; } // Move `cur' past the closing fence of an absolute identifier. // Return true if the closing fence was effectively seen. static inline bool skip_to_fence(const char*& cur, const char* end) { return skip_to_nonescaped_char(cur, end, '|'); } // Move `cur' past the closing quote of string literal. // Return true if the closing fence was effectively seen. static inline bool skip_to_quote(const char*& cur, const char* end) { return skip_to_nonescaped_char(cur, end, '"'); } // Return true if the character `c' be part of a non-absolute // identifier. static bool identifier_part(char c) { switch (c) { case '+': case '-': case '*': case '/': case '%': case '^': case '~': case '@': case '$': case '&': case ':': case '=': case '<': case '>': case '?': case '!': case '_': return true; default: return isalnum(c); } } // Return true if the character `c' has a special meaning after // the sharp character. static bool special_after_sharp(char c) { return c == '(' or c == '\'' or c == ':'; } // Return true if the sequence `[cur, end)' has a prefix that is // an integer followrd by the equal sign or the sharp sign. // `cur' is moved along the way. static bool only_digits_before_equal_or_shap(const char*& cur, const char* end) { while (cur < end and isdigit(*cur)) ++cur; return cur < end and (*cur == '#' or *cur == '='); } // The token `t' was thought to designate an identifier. // Reclassify it as an integer if, in fact, its lexeme consists // entirely of digits. static void maybe_reclassify(Token& t) { const char* cur = t.lexeme->begin(); const char* end = t.lexeme->end(); while (cur < end and isdigit(*cur)) ++cur; if (cur == end) t.type = Token::integer; } const char* Lexer::tokenize(const char* cur, const char* end) { while (skip_blank(cur, end) < end) { Token t = { Token::unknown, 0 }; switch (*cur) { case '.': case ',': case '(': case ')': case '\'': case '\\': t.type = Token::Type(OPENAXIOM_SEXPR_TOKEN1(*cur)); t.lexeme = strings.intern(cur, 1); ++cur; break; case '#': { const char* start = cur; if (cur + 1 < end and special_after_sharp(cur[1])) { t.type = Token::Type(OPENAXIOM_SEXPR_TOKEN2(cur[0], cur[1])); t.lexeme = strings.intern(cur, 2); cur += 2; } else if (only_digits_before_equal_or_shap(++cur, end)) { t.type = *cur == '#' ? Token::sharp_integer_sharp : Token::sharp_integer_equal; t.lexeme = strings.intern(start, cur - start + 1); ++cur; } else if (cur + 1 < end and cur[1] == '\\') { start = cur += 2; skip_to_word_boundary(cur, end); t.type = Token::character; t.lexeme = strings.intern(start, cur - start); } else { skip_to_word_boundary(cur, end); t.lexeme = strings.intern(start, cur - start); } break; } case '|': { const char* start = cur; skip_to_fence(++cur, end); t.type = Token::identifier; t.lexeme = strings.intern(start, cur - start); break; } case '"': { const char* start = cur; skip_to_quote(++cur, end); t.type = Token::string; t.lexeme = strings.intern(start, cur - start); break; } default: if (identifier_part(*cur)) { const char* start = cur; skip_to_word_boundary(++cur, end); t.type = Token::identifier; t.lexeme = strings.intern(start, cur - start); maybe_reclassify(t); } else { const char* start = cur; skip_to_word_boundary(++cur, end); t.lexeme = strings.intern(start, cur - start); } break; } tokens.push_back(t); } return cur; } // ---------- // -- Atom -- // ---------- Atom::Atom(const Token& t) : tok(t) { } void Atom::accept(Visitor& v) const { v.visit(*this); } // ------------- // -- Integer -- // ------------- Integer::Integer(const Token& t) : Atom(t) { } void Integer::accept(Visitor& v) const { v.visit(*this); } // --------------- // -- Character -- // --------------- Character::Character(const Token& t) : Atom(t) { } void Character::accept(Visitor& v) const { v.visit(*this); } // ------------ // -- String -- // ------------ String::String(const Token& t) : Atom(t) { } void String::accept(Visitor& v) const { v.visit(*this); } // ------------ // -- Symbol -- // ------------ Symbol::Symbol(const Token& t, Kind k) : Atom(t), sort(k) { } void Symbol::accept(Visitor& v) const { v.visit(*this); } // ------------ // -- Anchor -- // ------------ Anchor::Anchor(size_t t, const Syntax* s) : tag(t), val(s) { } void Anchor::accept(Visitor& v) const { v.visit(*this); } // --------------- // -- Reference -- // --------------- Reference::Reference(const Token& t, size_t v) : Atom(t), pos(v) { } void Reference::accept(Visitor& v) const { v.visit(*this); } // ----------- // -- Quote -- // ----------- Quote::Quote(const Syntax* s) : form(s) { } void Quote::accept(Visitor& v) const { v.visit(*this); } // -------------- // -- Function -- // -------------- Function::Function(const Syntax* s) : form(s) { } void Function::accept(Visitor& v) const { v.visit(*this); } // ---------- // -- Pair -- // ---------- Pair::Pair(const Syntax* f, const Syntax* s) : elts(f, s) { } void Pair::accept(Visitor& v) const { v.visit(*this); } // ---------- // -- List -- // ---------- List::List() { } List::List(const base& elts) : base(elts) { } List::~List() { } void List::accept(Visitor& v) const { v.visit(*this); } // ------------ // -- Vector -- // ------------ Vector::Vector() { } Vector::Vector(const base& elts) : base(elts) { } Vector::~Vector() { } void Vector::accept(Visitor& v) const { v.visit(*this); } // --------------------- // -- Syntax::Visitor -- // --------------------- // implicitly convert a reference to `T' to a reference to `S'. template inline const S& as(const T& t) { return t; } void Syntax::Visitor::visit(const Integer& i) { visit(as(i)); } void Syntax::Visitor::visit(const Character& c) { visit(as(c)); } void Syntax::Visitor::visit(const String& s) { visit(as(s)); } void Syntax::Visitor::visit(const Symbol& s) { visit(as(s)); } void Syntax::Visitor::visit(const Reference& r) { visit(as(r)); } // --------------- // -- Allocator -- // --------------- Allocator::Allocator() { } // This destructor is defined here so that it provides // a single instantiation point for destructors of all // used templates floating around. Allocator::~Allocator() { } const Integer* Allocator::make_integer(const Token& t) { return ints.allocate(t); } const String* Allocator::make_string(const Token& t) { return strs.allocate(t); } const Symbol* Allocator::make_symbol(const Token& t, Symbol::Kind k) { return syms.allocate(t, k); } const Anchor* Allocator::make_anchor(size_t t, const Syntax* s) { return ancs.allocate(t, s); } const Reference* Allocator::make_reference(const Token& t, size_t i) { return refs.allocate(t, i); } const Quote* Allocator::make_quote(const Syntax* s) { return quotes.allocate(s); } const Function* Allocator::make_function(const Syntax* s) { return funs.allocate(s); } const Pair* Allocator::make_pair(const Syntax* f, const Syntax* s) { return pairs.allocate(f, s); } const List* Allocator::make_list(const std::vector& elts) { if (elts.empty()) return &empty_list; return lists.make(elts); } const Vector* Allocator::make_vector(const std::vector& elts) { if (elts.empty()) return &empty_vector; return vectors.make(elts); } // ------------ // -- Parser -- // ------------ // Signal a parse error static void parse_error(const std::string& s) { throw SystemError(s); } // Signal that an expected syntax object was missing static void expected_syntax(const std::string& s) { parse_error("expected " + s); } // Signal an abrupt end of input static void unexpected_end_of_input(const std::string& s) { parse_error("unexpected end of input after " + s); } // Signal a missing closing parenthesis static void missing_closer_for(const std::string& s) { parse_error("missing closing parenthesis for " + s); } // The sequence of characters in [cur, last) consists // entirely of digits. Return the corresponding natural value. static size_t natural_value(const char* cur, const char* last) { size_t n = 0; for (; cur < last; ++cur) // FIXME: check for overflow. n = 10 * n + (*cur - '0'); return n; } // Parse a plain identifier or a Lisp-style keyword identifier. const Symbol* Parser::parse_symbol(const Token*& cur, const Token* last) { Symbol::Kind kind = *cur->lexeme->begin() == ':' ? Symbol::keyword : Symbol::ordinary; return alloc.make_symbol(*cur++, kind); } const Character* Parser::parse_character(const Token*& cur, const Token* last) { // NOTE: For the time being, accept only simple characters. if (cur->lexeme->size() != 1) parse_error("invalid literal character syntax"); return alloc.make_character(*cur++); } // Parse an anchor definition of the form #n= const Anchor* Parser::parse_anchor(const Token*& cur, const Token* last) { const size_t n = natural_value(cur->lexeme->begin() + 1, cur->lexeme->end() - 1); if (++cur == last) unexpected_end_of_input("sharp-integer-equal sign"); return alloc.make_anchor(n, parse_syntax(cur, last)); } // Parse a reference to an anchor, #n# const Reference* Parser::parse_reference(const Token*& cur, const Token* last) { const size_t n = natural_value(cur->lexeme->begin() + 1, cur->lexeme->end() - 1); return alloc.make_reference(*cur++, n); } // Parse an uninterned symbol #: const Symbol* Parser::parse_uninterned(const Token*& cur, const Token* last) { if (cur == last or cur->type != Token::identifier) expected_syntax("symbol after sharp-colon sign"); // FIXME: check that the identifier is not a keyword. return alloc.make_symbol(*cur++, Symbol::uninterned); } // Parse a function syntax: #' const Function* Parser::parse_function(const Token*& cur, const Token* last) { if (cur == last) unexpected_end_of_input("sharp-quote sign"); return alloc.make_function(parse_syntax(cur, last)); } // Parse a quotation const Quote* Parser::parse_quote(const Token*& cur, const Token* last) { if (cur == last) unexpected_end_of_input("quote sign"); return alloc.make_quote(parse_syntax(cur, last)); } // Parse a vector of syntax objects: #(s .. s) const Vector* Parser::parse_vector(const Token*& cur, const Token* last) { std::vector elts; while (cur < last and cur->type != Token::close_paren) elts.push_back(parse_syntax(cur, last)); if (cur == last) missing_closer_for("vector"); ++cur; return alloc.make_vector(elts); } // Constructs a pair or a list syntax object. // This function is hairy for three reasons: (a) it is not known // whether we list or a pair until after we have seen the // enclosed tokens; (b) a dot is allowed at most once; (c) Lisp-style // improper lists are not allowed. const Syntax* Parser::parse_list_or_pair(const Token*& cur, const Token* last) { std::vector elts; bool saw_dot = false; while (cur < last and cur->type != Token::close_paren) { if (cur->type == Token::dot) { if (elts.size() != 1) parse_error("unexpected dot sign"); saw_dot = true; ++cur; continue; } elts.push_back(parse_syntax(cur, last)); if (saw_dot && elts.size() == 2) break; } if (cur == last or cur->type != Token::close_paren) missing_closer_for(saw_dot ? "pair" : "list"); ++cur; if (saw_dot) return alloc.make_pair(elts.front(), elts.back()); return alloc.make_list(elts); } Parser::Parser(Allocator& a, std::vector& v) : alloc(a), syns(v) { } const Syntax* Parser::parse_syntax(const Token*& cur, const Token* last) { switch (cur->type) { case Token::integer: return alloc.make_integer(*cur++); case Token::character: return parse_character(cur, last); case Token::string: return alloc.make_string(*cur++); case Token::identifier: return parse_symbol(cur, last); case Token::sharp_integer_equal: return parse_anchor(cur, last); case Token::sharp_integer_sharp: return parse_reference(cur, last); case Token::sharp_colon: return parse_uninterned(++cur, last); case Token::sharp_apostrophe: return parse_function(++cur, last); case Token::sharp_open_paren: return parse_vector(++cur, last); case Token::apostrophe: return parse_quote(++cur, last); case Token::open_paren: return parse_list_or_pair(++cur, last); default: parse_error(std::string("parse error before ") + cur->lexeme->begin()); return 0; // never executed } } const Token* Parser::parse(const Token* cur, const Token* last) { while (cur < last) syns.push_back(parse_syntax(cur, last)); return cur; } } }