\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/interp sfsfun.boot} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \begin{verbatim} NOTEfrom TTT: at least BesselJAsymptOrder needs work 1. This file contains the contents of BWC's original files: floaterrors.boot floatutils.boot rgamma.boot cgamma.boot rpsi.boot cpsi.boot f01.boot chebf01cmake.boot chebevalsf.boot besselIJ.boot 2. All declarations have been commented out with "--@@" since the boot translator is generating bad lisp code from them. 3. The functions PsiAsymptotic, PsiEps and PsiAsymptoticOrder had inconpatible definitions in rpsi.boot and cpsi.boot -- the local variables were declared float in one file and COMPLEX in the other. The type declarations have been commented out and the duplicate definitions have been deleted. 4. BesselIJ was not compiling. I have modified the code from that file to make it compile. It should be checked for correctness. SMW June 25, 1991 "Fixes" to BesselJ, B. Char June 14, 1992. Needs extensive testing and further fixes to BesselI and BesselJ. More fixes to BesselJ, T. Tsikas 24 Feb, 1995. \end{verbatim} \section{License} <<license>>= -- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are -- met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS -- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> -- Used to be SPECFNSF )package "BOOT" FloatError(formatstring,arg) == -- ERROR(formatstring,arg) ERROR FORMAT([],formatstring,arg) nangenericcomplex () == 1.0/COMPLEX(0.0) fracpart(x) == CADR(MULTIPLE_-VALUE_-LIST(FLOOR(x))) intpart(x) == CAR(MULTIPLE_-VALUE_-LIST(FLOOR(x))) negintp(x) == if ZEROP IMAGPART(x) and x<0.0 and ZEROP fracpart(x) then true else false --- Small float implementation of Gamma function. Valid for --- real arguments. Maximum error (relative) seems to be --- 2-4 ulps for real x 2<x<9, and up to ten ulps for larger x --- up to overflow. See Hart & Cheney. --- Bruce Char, April, 1990. horner(l,x) == result := 0 for el in l repeat result := result *x + el return result rgamma (x) == if COMPLEXP(x) then FloatError('"Gamma not implemented for complex value ~D",x) ZEROP (x-1.0) => 1.0 if x>20 then gammaStirling(x) else gammaRatapprox(x) lnrgamma (x) == if x>20 then lnrgammaRatapprox(x) else LOG(gammaRatapprox(x)) cbeta(z,w) == cgamma(z)*cgamma(w)/(cgamma(z+w)) gammaStirling(x) == EXP(lnrgamma(x)) lnrgammaRatapprox(x) == (x-.5)*LOG(x) - x + LOG(SQRT(2.0*PI)) + phiRatapprox(x) phiRatapprox(x) == arg := 1/(x**2) p := horner([.0666629070402007526,_ .6450730291289920251389,_ .670827838343321349614617,_ .12398282342474941538685913],arg); q := horner([1.0,7.996691123663644194772,_ 8.09952718948975574728214,_ 1.48779388109699298468156],arg); result := p/(x*q) result gammaRatapprox (x) == if (x>=2 and x<=3) then result := gammaRatkernel(x) else if x>3 then n := FLOOR(x)-2 a := x-n-2 reducedarg := 2+a prod := */[reducedarg+i for i in 0..n-1] result := prod* gammaRatapprox(reducedarg) else if (2>x and x>0) then n := 2-FLOOR(x) a := x-FLOOR(x) reducedarg := 2+a prod := */[x+i for i in 0..n-1] result := gammaRatapprox(reducedarg)/prod else Pi := PI lx := MULTIPLE_-VALUE_-LIST(FLOOR(x)) intpartx := CAR(lx)+1 restx := CADR(lx) if ZEROP restx -- case of negative non-integer value then FloatError ('"Gamma undefined for non-positive integers: ~D",x) result := nangenericcomplex () else result := Pi/(gammaRatapprox(1.0-x)*(-1.0)**(intpartx+1)*SIN(restx*Pi)) result gammaRatkernel(x) == p := horner(REVERSE([3786.01050348257245475108,_ 2077.45979389418732098416,_ 893.58180452374981423868,_ 222.1123961680117948396,_ 48.95434622790993805232,_ 6.12606745033608429879,_ .778079585613300575867]),x-2) q := horner(REVERSE([3786.01050348257187258861,_ 476.79386050368791516095,_ -867.23098753110299445707,_ 83.55005866791976957459,_ 50.78847532889540973716,_ -13.40041478578134826274,_ 1]),x-2.0) p/q -- cgamma(z) Gamma function for complex arguments. -- Bruce Char April-May, 1990. -- -- Our text for complex gamma is H. Kuki's paper Complex Gamma -- Function with Error Control", CACM vol. 15, no. 4, ppp. 262-267. -- (April, 1972.) It uses the reflection formula and the basic -- z+1 recurrence to transform the argument into something that -- Stirling's asymptotic formula can handle. -- -- However along the way it does a few tricky things to reduce -- problems due to roundoff/cancellation error for particular values. -- cgammat is auxiliary "t" function (see p. 263 Kuki) cgammat(x) == MAX(0.1, MIN(10.0, 10.0*SQRT(2.0) - ABS(x))) cgamma (z) == z2 := IMAGPART(z) z1 := REALPART(z) --- call real valued gamma if z is real if ZEROP z2 then result := rgamma(z1) else result := clngamma(z1,z2,z) result := EXP(result) result lncgamma(z) == clngamma(REALPART z, IMAGPART z, z) clngamma(z1,z2,z) == --- conjugate of gamma is gamma of conjugate. map 2nd and 4th quads --- to first and third quadrants if z1<0.0 then if z2 > 0.0 then result := CONJUGATE(clngammacase1(z1,-z2,COMPLEX(z1,-z2))) else result := clngammacase1(z1,z2,z) else if z2 < 0.0 then result := CONJUGATE(clngammacase23(z1,-z2,_ COMPLEX(z1,-z2))) else result := clngammacase23(z1,z2,z) result clngammacase1(z1,z2,z) == result1 := PiMinusLogSinPi(z1,z2,z) result2 := clngamma(1.0-z1,-z2,1.0-z) result1-result2 PiMinusLogSinPi(z1,z2,z) == cgammaG(z1,z2) - logH(z1,z2,z) cgammaG(z1,z2) == LOG(2*PI) + PI*z2 - COMPLEX(0.0,1.0)*PI*(z1-.5) logH(z1,z2,z) == z1bar := CADR(MULTIPLE_-VALUE_-LIST(FLOOR(z1))) ---frac part of z1 piz1bar := PI*z1bar piz2 := PI*z2 twopiz2 := 2.0*piz2 i := COMPLEX(0.0,1.0) part2 := EXP(twopiz2)*(2.0*SIN(piz1bar)**2 + SIN(2.0*piz1bar)*i) part1 := -TANH(piz2)*(1.0+EXP(twopiz2)) --- part1 is another way of saying 1 - exp(2*Pi*z1bar) LOG(part1+part2) clngammacase23(z1,z2,z) == tz2 := cgammat(z2) if (z1 < tz2) then result:= clngammacase2(z1,z2,tz2,z) else result:= clngammacase3(z) result clngammacase2(z1,z2,tz2,z) == n := float(CEILING(tz2-z1)) zpn := z+n (z-.5)*LOG(zpn) - (zpn) + cgammaBernsum(zpn) - cgammaAdjust(logS(z1,z2,z,n,zpn)) logS(z1,z2,z,n,zpn) == sum := 0.0 for k in 0..(n-1) repeat if z1+k < 5.0 - 0.6*z2 then sum := sum + LOG((z+k)/zpn) else sum := sum + LOG(1.0 - (n-k)/zpn) sum --- on p. 265, Kuki, logS result should have its imaginary part --- adjusted by 2 Pi if it is negative. cgammaAdjust(z) == if IMAGPART(z)<0.0 then result := z + COMPLEX(0.0, 2.0*PI) else result := z result clngammacase3(z) == (z- .5)*LOG(z) - z + cgammaBernsum(z) cgammaBernsum (z) == sum := LOG(2.0*PI)/2.0 zterm := z zsquaredinv := 1.0/(z*z) l:= [.083333333333333333333, -.0027777777777777777778,_ .00079365079365079365079, -.00059523809523809523810,_ .00084175084175084175084, -.0019175269175269175269,_ .0064102564102564102564] for m in 1..7 for el in l repeat zterm := zterm*zsquaredinv sum := sum + el*zterm sum --- nth derivatives of ln gamma for real x, n = 0,1,.... --- requires files floatutils, rgamma $PsiAsymptoticBern := VECTOR(0.0, 0.1666666666666667, -0.03333333333333333, 0.02380952380952381,_ -0.03333333333333333, 0.07575757575757576, -0.2531135531135531, 1.166666666666667,_ -7.092156862745098, 54.97117794486216, -529.1242424242424, 6192.123188405797,_ -86580.25311355311, 1425517.166666667, -27298231.06781609, 601580873.9006424,_ -15116315767.09216, 429614643061.1667, -13711655205088.33, 488332318973593.2,_ -19296579341940070.0, 841693047573682600.0, -40338071854059460000.0) PsiAsymptotic(n,x) == xn := x**n xnp1 := xn*x xsq := x*x xterm := xsq factterm := rgamma(n+2)/2.0/rgamma(float(n+1)) --- initialize to 1/n! sum := AREF($PsiAsymptoticBern,1)*factterm/xterm for k in 2..22 repeat xterm := xterm * xsq if n=0 then factterm := 1.0/float(2*k) else if n=1 then factterm := 1 else factterm := factterm * float(2*k+n-1)*float(2*k+n-2)/(float(2*k)*float(2*k-1)) sum := sum + AREF($PsiAsymptoticBern,k)*factterm/xterm PsiEps(n,x) + 1.0/(2.0*xnp1) + 1.0/xn * sum PsiEps(n,x) == if n = 0 then result := -LOG(x) else result := 1.0/(float(n)*(x**n)) result PsiAsymptoticOrder(n,x,nterms) == sum := 0 xterm := 1.0 np1 := n+1 for k in 0..nterms repeat xterm := (x+float(k))**np1 sum := sum + 1.0/xterm sum rPsi(n,x) == if x<=0.0 then if ZEROP fracpart(x) then FloatError('"singularity encountered at ~D",x) else m := MOD(n,2) sign := (-1)**m if fracpart(x)=.5 then skipit := 1 else skipit := 0 sign*((PI**(n+1))*cotdiffeval(n,PI*(-x),skipit) + rPsi(n,1.0-x)) else if n=0 then - rPsiW(n,x) else rgamma(float(n+1))*rPsiW(n,x)*(-1)**MOD(n+1,2) ---Amos' w function, with w(0,x) picked to be -psi(x) for x>0 rPsiW(n,x) == if (x <=0 or n < 0) then HardError('"rPsiW not implemented for negative n or non-positive x") nd := 6 -- magic number for number of digits in a word? alpha := 3.5 + .40*nd beta := 0.21 + (.008677e-3)*(nd-3) + (.0006038e-4)*(nd-3)**2 xmin := float(FLOOR(alpha + beta*n) + 1) if n>0 then a := MIN(0,1.0/float(n)*LOG(DOUBLE_-FLOAT_-EPSILON/MIN(1.0,x))) c := EXP(a) if ABS(a) >= 0.001 then fln := x/c*(1.0-c) else fln := -x*a/c bign := FLOOR(fln) + 1 --- Amos says to use alternative series for large order if ordinary --- backwards recurrence too expensive if (bign < 15) and (xmin > 7.0+x) then return PsiAsymptoticOrder(n,x,bign) if x>= xmin then return PsiAsymptotic(n,x) ---ordinary case -- use backwards recursion PsiBack(n,x,xmin) PsiBack(n,x,xmin) == xintpart := PsiIntpart(x) x0 := x-xintpart ---frac part of x result := PsiAsymptotic(n,x0+xmin+1.0) for k in xmin..xintpart by -1 repeat --- Why not decrement from x? See Amos p. 498 result := result + 1.0/((x0 + float(k))**(n+1)) result PsiIntpart(x) == if x<0 then result := -PsiInpart(-x) else result := FLOOR(x) return result ---Code for computation of derivatives of cot(z), necessary for --- polygamma reflection formula. If you want to compute n-th derivatives of ---cot(Pi*x), you have to multiply the result of cotdiffeval by Pi**n. -- MCD: This is defined at the Lisp Level. -- COT(z) == -- 1.0/TAN(z) cotdiffeval(n,z,skipit) == ---skip=1 if arg z is known to be an exact multiple of Pi/2 a := MAKE_-ARRAY(n+2) SETF(AREF(a,0),0.0) SETF(AREF(a,1),1.0) for i in 2..n repeat SETF(AREF(a,i),0.0) for l in 1..n repeat m := MOD(l+1,2) for k in m..l+1 by 2 repeat if k<1 then t1 := 0 else t1 := -AREF(a,k-1)*(k-1) if k>l then t2 := 0 else t2 := -AREF(a,k+1)*(k+1) SETF(AREF(a,k), t1+t2) --- evaluate d^N/dX^N cot(z) via Horner-like rule v := COT(z) sq := v**2 s := AREF(a,n+1) for i in (n-1)..0 by -2 repeat s := s*sq + AREF(a,i) m := MOD(n,2) if m=0 then s := s*v if skipit=1 then if m=0 then return 0 else return AREF(a,0) else return s --- nth derivatives of ln gamma for complex z, n=0,1,... --- requires files rpsi (and dependents), floaterrors --- currently defined only in right half plane until reflection formula --- works --- B. Char, June, 1990. cPsi(n,z) == x := REALPART(z) y := IMAGPART(z) if ZEROP y then --- call real function if real return rPsi(n,x) if y<0.0 then -- if imagpart(z) negative, take conjugate of conjugate conjresult := cPsi(n,COMPLEX(x,-y)) return COMPLEX(REALPART(conjresult),-IMAGPART(conjresult)) nterms := 22 bound := 10.0 if x<0.0 --- and ABS(z)>bound and ABS(y)<bound then FloatError('"Psi implementation can't compute at ~S ",[n,z]) --- return cpsireflect(n,x,y,z) else if (x>0.0 and ABS(z)>bound ) --- or (x<0.0 and ABS(y)>bound) then return PsiXotic(n,PsiAsymptotic(n,z)) else --- use recursion formula m := CEILING(SQRT(bound*bound - y*y) - x + 1.0) result := COMPLEX(0.0,0.0) for k in 0..(m-1) repeat result := result + 1.0/((z + float(k))**(n+1)) return PsiXotic(n,result+PsiAsymptotic(n,z+m)) PsiXotic(n,result) == rgamma(float(n+1))*(-1)**MOD(n+1,2)*result cpsireflect(n,z) == m := MOD(n,2) sign := (-1)**m sign*PI**(n+1)*cotdiffeval(n,PI*z,0) + cPsi(n,1.0-z) --- c parameter to 0F1, possibly complex --- z argument to 0F1 --- Depends on files floaterror, floatutils --- Program transcribed from Fortran,, p. 80 Luke 1977 chebf01 (c,z) == --- w scale factor so that 0<z/w<1 --- n n+2 coefficients will be produced stored in an array --- indexed from 0 to n+1. --- See Luke's books for further explanation n := 75 --- ad hoc decision --- if ABS(z)/ABS(c) > 200.0 and ABS(z)>10000.0 --- then --- FloatError('"cheb0F1 not implemented for ~S < 1",[c,z]) w := 2.0*z --- arr will be used to store the Cheb. series coefficients four:= 4.0 start := EXPT(10.0, -200) n1 := n+1 n2 := n+2 a3 := 0.0 a2 := 0.0 a1 := start -- arbitrary starting value z1 := four/w ncount := n1 arr := MAKE_-ARRAY(n2) SETF(AREF(arr,ncount) , start) -- start off x1 := n2 c1 := 1.0 - c for ncount in n..0 by -1 repeat divfac := 1.0/x1 x1 := x1 -1.0 SETF(AREF(arr,ncount) ,_ x1*((divfac+z1*(x1-c1))*a1 +_ (1.0/x1 + z1*(x1+c1+1.0))*a2-divfac*a3)) a3 := a2 a2 := a1 a1 := AREF(arr,ncount) SETF(AREF(arr,0),AREF(arr,0)/2.0) -- compute scale factor rho := AREF(arr,0) sum := rho p := 1.0 for i in 1..n1 repeat rho := rho - p*AREF(arr,i) sum := sum+AREF(arr,i) p := -p for l in 0..n1 repeat SETF(AREF(arr,l), AREF(arr,l)/rho) sum := sum/rho --- Now evaluate array at argument b := 0.0 temp := 0.0 for i in (n+1)..0 by -1 repeat cc := b b := temp temp := -cc + AREF(arr,i) temp brutef01(c,z) == -- Use series definition. Won't work well if cancellation occurs term := 1.0 sum := term n := 0.0 oldsum := 0.0 maxnterms := 10000 for i in 0..maxnterms until oldsum=sum repeat oldsum := sum term := term*z/(c+n)/(n+1.0) sum := sum + term n := n+1.0 sum f01(c,z)== if negintp(c) then FloatError('"0F1 not defined for negative integer parameter value ~S",c) -- conditions when we'll permit the computation else if ABS(c)<1000.0 and ABS(z)<1000.0 then brutef01(c,z) else if ZEROP IMAGPART(z) and ZEROP IMAGPART(c) and z>=0.0 and c>=0.0 then brutef01(c,z) --- else --- t := SQRT(-z) --- c1 := c-1.0 --- p := PHASE(c) --- if ABS(c)>10.0*ABS(t) and p>=0.0 and PHASE(c)<.90*PI --- then BesselJAsymptOrder(c1,2*t)*cgamma(c/(t**(c1))) --- else if ABS(t)>10.0*ABS(c) and ABS(t)>50.0 --- then BesselJAsympt(c1,2*t)*cgamma(c/(t**(c1))) --- else --- FloatError('"0F1 not implemented for ~S",[c,z]) else if (10.0*ABS(c)>ABS(z)) and ABS(c)<1.0E4 and ABS(z)<1.0E4 then brutef01(c,z) else FloatError('"0F1 not implemented for ~S",[c,z]) --- c parameter to 0F1 --- w scale factor so that 0<z/w<1 --- n n+2 coefficients will be produced stored in an array --- indexed from 0 to n+1. --- See Luke's books for further explanation --- Program transcribed from Fortran,, p. 80 Luke 1977 chebf01coefmake (c,w,n) == --- arr will be used to store the Cheb. series coefficients four:= 4.0 start := EXPT(10.0, -200) n1 := n+1 n2 := n+2 a3 := 0.0 a2 := 0.0 a1 := start -- arbitrary starting value z1 := four/w ncount := n1 arr := MAKE_-ARRAY(n2) SETF(AREF(arr,ncount) , start) -- start off x1 := n2 c1 := 1.0 - c for ncount in n..0 by -1 repeat divfac := 1.0/x1 x1 := x1 -1.0 SETF(AREF(arr,ncount) ,_ x1*((divfac+z1*(x1-c1))*a1 +_ (1.0/x1 + z1*(x1+c1+1.0))*a2-divfac*a3)) a3 := a2 a2 := a1 a1 := AREF(arr,ncount) SETF(AREF(arr,0),AREF(arr,0)/2.0) -- compute scale factor rho := AREF(arr,0) sum := rho p := 1.0 for i in 1..n1 repeat rho := rho - p*AREF(arr,i) sum := sum+AREF(arr,i) p := -p for l in 0..n1 repeat SETF(AREF(arr,l), AREF(arr,l)/rho) sum := sum/rho return([sum,arr]) ---evaluation of Chebychev series of degree n at x, where the series's ---coefficients are given by the list in descending order (coef. of highest ---power first) ---May be numerically unstable for certain lists of coefficients; --- could possibly reverse sequence of coefficients --- Cheney and Hart p. 15. --- B. Char, March 1990 chebeval (coeflist,x) == b := 0; temp := 0; y := 2*x; for el in coeflist repeat c := b; b := temp temp := y*b -c + el (temp -c)/2 chebevalarr(coefarr,x,n) == b := 0; temp := 0; y := 2*x; for i in 1..n repeat c := b; b := temp temp := y*b -c + coefarr.i (temp -c)/2 --- If plist is a list of coefficients for the Chebychev approximation --- of a function f(x), then chebderiveval computes the Chebychev approximation --- of f'(x). See Luke, "Special Functions and their approximations, vol. 1 --- Academic Press 1969., p. 329 (from Clenshaw and Cooper) --- < definition to be supplied> --- chebstareval(plist,n) computes a Chebychev approximation from a --- coefficient list, using shifted Chebychev polynomials of the first kind --- The defining relation is that T*(n,x) = T(n,2*x-1). Thus the interval --- [0,1] of T*n is the interval [-1,1] of Tn. chebstareval(coeflist,x) == -- evaluation of T*(n,x) b := 0 temp := 0 y := 2*(2*x-1) for el in coeflist repeat c := b; b := temp temp := y*b -c + el temp - y*b/2 chebstarevalarr(coefarr,x,n) == -- evaluation of sum(C(n)*T*(n,x)) b := 0 temp := 0 y := 2*(2*x-1) for i in (n+1)..0 by -1 repeat c := b b := temp temp := y*b -c + AREF(coefarr,i) temp - y*b/2 --Float definitions for Bessel functions I and J. --External references: cgamma, rgamma, chebf01coefmake, chebevalstarsf -- floatutils ---BesselJ works for complex and real values of v and z BesselJ(v,z) == ---Ad hoc boundaries for approximation B1:= 10 B2:= 10 n := 50 --- number of terms in Chebychev series. --- tests for negative integer order (FLOATP(v) and ZEROP fracpart(v) and (v<0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and ZEROP fracpart(REALPART(v)) and REALPART(v)<0.0) => --- odd or even according to v (9.1.5 A&S) --- $J_{-n}(z)=(-1)^{n} J_{n}(z)$ BesselJ(-v,z)*EXPT(-1.0,v) (FLOATP(z) and (z<0)) or (COMPLEXP(z) and REALPART(z)<0.0) => --- negative argument (9.1.35 A&S) --- $J_{\nu}(z e^{m \pi i}) = e^{m \nu \pi i} J_{\nu}(z)$ BesselJ(v,-z)*EXPT(-1.0,v) ZEROP z and ((FLOATP(v) and (v>=0.0)) or (COMPLEXP(v) and ZEROP IMAGPART(v) and REALPART(v)>=0.0)) => --- zero arg, pos. real order ZEROP v => 1.0 --- J(0,0)=1 0.0 --- J(v,0)=0 for real v>0 rv := ABS(v) rz := ABS(z) (rz>B1) and (rz > B2*rv) => --- asymptotic argument BesselJAsympt(v,z) (rv>B1) and (rv > B2*rz) => --- asymptotic order BesselJAsymptOrder(v,z) (rz< B1) and (rv<B1) => --- small order and argument arg := -(z*z)/4.0 w := 2.0*arg vp1 := v+1.0 [sum,arr] := chebf01coefmake(vp1,w,n) ---if we get NaNs then half n while not _=(sum,sum) repeat n:=FLOOR(n/2) [sum,arr] := chebf01coefmake(vp1,w,n) ---now n is safe, can we increase it (we know that 2*n is bad)? chebstarevalarr(arr,arg/w,n)/cgamma(vp1)*EXPT(z/2.0,v) true => BesselJRecur(v,z) FloatError('"BesselJ not implemented for ~S", [v,z]) BesselJRecur(v,z) == -- boost order --Numerical.Recipes. suggest so:=v+sqrt(n.s.f.^2*v) so:=15.0*z -- reduce order until non-zero while ZEROP ABS(BesselJAsymptOrder(so,z)) repeat so:=so/2.0 if ABS(so)<ABS(z) then so:=v+18.*SQRT(v) m:= FLOOR(ABS(so-v))+1 w:=MAKE_-ARRAY(m) SETF(AREF(w,m-1),BesselJAsymptOrder(v+m-1,z)) SETF(AREF(w,m-2),BesselJAsymptOrder(v+m-2,z)) for i in m-3 .. 0 by -1 repeat SETF(AREF(w,i), 2.0 * (v+i+1.0) * AREF(w,i+1) /z -AREF(w,i+2)) AREF(w,0) BesselI(v,z) == B1 := 15.0 B2 := 10.0 ZEROP(z) and FLOATP(v) and (v>=0.0) => --- zero arg, pos. real order ZEROP(v) => 1.0 --- I(0,0)=1 0.0 --- I(v,0)=0 for real v>0 --- Transformations for negative integer orders FLOATP(v) and ZEROP(fracpart(v)) and (v<0) => BesselI(-v,z) --- Halfplane transformations for Re(z)<0 REALPART(z)<0.0 => BesselI(v,-z)*EXPT(-1.0,v) --- Conjugation for complex order and real argument REALPART(v)<0.0 and not ZEROP IMAGPART(v) and FLOATP(z) => CONJUGATE(BesselI(CONJUGATE(v),z)) ---We now know that Re(z)>= 0.0 ABS(z) > B1 => --- asymptotic argument case FloatError('"BesselI not implemented for ~S",[v,z]) ABS(v) > B1 => FloatError('"BesselI not implemented for ~S",[v,z]) --- case of small argument and order REALPART(v)>= 0.0 => besselIback(v,z) REALPART(v)< 0.0 => chebterms := 50 besselIcheb(z,v,chebterms) FloatError('"BesselI not implemented for ~S",[v,z]) --- Compute n terms of the chebychev series for f01 besselIcheb(z,v,n) == arg := (z*z)/4.0 w := 2.0*arg; vp1 := v+1.0; [sum,arr] := chebf01coefmake(vp1,w,n) result := chebstarevalarr(arr,arg/w,n)/cgamma(vp1)*EXPT(z/2.0,v) besselIback(v,z) == ipv := IMAGPART(v) rpv := REALPART(v) lm := MULTIPLE_-VALUE_-LIST(FLOOR(rpv)) m := CAR(lm) --- floor of real part of v n := 2*MAX(20,m+10) --- how large the back recurrence should be tv := CADR(lm)+(v-rpv) --- fractional part of real part of v --- plus imaginary part of v vp1 := tv+1.0; result := BesselIBackRecur(v,m,tv,z,'"I",n) result := result/cgamma(vp1)*EXPT(z/2.0,tv) --- Backward recurrence for Bessel functions. Luke (1975), p. 247. --- works for -Pi< arg z <= Pi and -Pi < arg v <= Pi BesselIBackRecur(largev,argm,v,z,type,n) == --- v + m = largev one := 1.0 two := 2.0 zero := 0.0 start := EXPT(10.0,-40) z2 := two/z m2 := n+3 w:=MAKE_-ARRAY(m2+1) SETF(AREF(w,m2), zero) --- start off if type = '"I" then val := one else val := -one m1 := n+2 SETF(AREF(w,m1), start) m := n+1 xm := float(m) ct1 := z2*(xm+v) --- initialize for m in (n+1)..1 by -1 repeat SETF(AREF(w,m), AREF(w,m+1)*ct1 + val*AREF(w,m+2)) ct1 := ct1 - z2 m := 1 + FLOOR(n/2) m2 := m + m -1 if (v=0) then pn := AREF(w, m2 + 2) for m2 in (2*m-1)..3 by -2 repeat pn := AREF(w, m2) - val *pn pn := AREF(w,1) - val*(pn+pn) else v1 := v-one xm := float(m) ct1 := v + xm + xm pn := ct1*AREF(w, m2 + 2) for m2 in (m+m -1)..3 by -2 repeat ct1 := ct1 - two pn := ct1*AREF(w,m2) - val*pn/xm*(v1+xm) xm := xm - one pn := AREF(w,1) - val * pn m1 := n+2 for m in 1..m1 repeat SETF(AREF(w,m), AREF(w,m)/pn) AREF(w,argm+1) ---Asymptotic functions for large values of z. See p. 204 Luke 1969 vol. 1. --- mu is 4*v**2 --- zsqr is z**2 --- zfth is z**4 BesselasymptA(mu,zsqr,zfth) == (mu -1)/(16.0*zsqr) * (1 + (mu - 13.0)/(8.0*zsqr) + _ (mu**2 - 53.0*mu + 412.0)/(48.0*zfth)) BesselasymptB(mu,z,zsqr,zfth) == musqr := mu*mu z + (mu-1.0)/(8.0*z) *(1.0 + (mu - 25.0)/(48.0*zsqr) + _ (musqr - 114.0*mu + 1073.0)/(640.0*zfth) +_ (5.0*mu*musqr - 1535.0*musqr + 54703.0*mu - 375733.0)/(128.0*zsqr*zfth)) --- Asymptotic series only works when |v| < |z|. BesselJAsympt (v,z) == pi := PI mu := 4.0*v*v zsqr := z*z zfth := zsqr*zsqr SQRT(2.0/(pi*z))*EXP(BesselasymptA(mu,zsqr,zfth))*_ COS(BesselasymptB(mu,z,zsqr,zfth) - pi*v/2.0 - pi/4.0) ---Asymptotic series for I. See Whittaker, p. 373. --- valid for -3/2 Pi < arg z < 1/2 Pi BesselIAsympt(v,z,n) == i := COMPLEX(0.0, 1.0) if (REALPART(z) = 0.0) then return EXPT(i,v)*BesselJ(v,-IMAGPART(z)) sum1 := 0.0 sum2 := 0.0 fourvsq := 4.0*v**2 two := 2.0 eight := 8.0 term1 := 1.0 --- sum1, sum2, fourvsq,two,i,eight,term1]) for r in 1..n repeat term1 := -term1 *(fourvsq-(two*float(r)-1.0)**2)/_ (float(r)*eight*z) sum1 := sum1 + term1 sum2 := sum2 + ABS(term1) sqrttwopiz := SQRT(two*PI*z) EXP(z)/sqrttwopiz*(1.0 + sum1 ) +_ EXP(-(float(n)+.5)*PI*i)*EXP(-z)/sqrttwopiz*(1.0+ sum2) ---Asymptotic formula for BesselJ when order is large comes from ---Debye (1909). See Olver, Asymptotics and Special Functions, p. 134. ---Expansion good for 0<=phase(v)<Pi ---A&S recommend "uniform expansion" with complicated coefficients and Airy function. ---Debye's Formula is in 9.3.7,9.3.9,9.3.10 of A&S ---AXIOM recurrence for u_{k} ---f(0)==1::EXPR INT ---f(n)== (t^2)*(1-t^2)*D(f(n-1),t)/2 + (1/8)*integrate( (1-5*t^2)*f(n-1),t) BesselJAsymptOrder(v,z) == sechalpha := z/v alpha := ACOSH(1.0/sechalpha) tanhalpha := SQRT(1.0-(sechalpha*sechalpha)) -- cothalpha := 1.0/tanhalpha ca := 1.0/tanhalpha Pi := PI ca2:=ca*ca ca4:=ca2*ca2 ca8:=ca4*ca4 EXP(-v*(alpha-tanhalpha))/SQRT(2.0*Pi*v*tanhalpha)*_ (1.0+_ horner([ -5.0, 3.0],_ ca2)*ca/(v*24.0)+_ horner([ 385.0, -462.0, 81.0],_ ca2)*ca2/(1152.0*v*v)+_ horner([ -425425.0, 765765.0, -369603.0, 30375.0],_ ca2)*ca2*ca/(414720.0*v*v*v)+_ horner([ 185910725.0, -446185740.0, 349922430.0, -94121676.0, 4465125.0],_ ca2)*ca4/(39813120.0*v*v*v*v)+_ horner([ -188699385875.0, 566098157625.0, -614135872350.0, 284499769554.0, -49286948607.0, 1519035525.0],_ ca2)*ca4*ca/(6688604160.0*v*v*v*v*v)+_ horner([1023694168371875.0,-3685299006138750.0,5104696716244125.0,-3369032068261860.0,1050760774457901.0,-127577298354750.0,2757049477875.0],_ ca2)*ca4*ca2/(4815794995200.0*v*v*v*v*v*v)) --- See Olver, p. 376-382. BesselIAsymptOrder(v,vz) == z := vz/v Pi := PI --- Use reflection formula (Atlas, p. 492) if v not in right half plane; Is this always accurate? if REALPART(v)<0.0 then return BesselIAsymptOrder(-v,vz) + 2.0/Pi*SIN(-v*Pi)*BesselKAsymptOrder(-v,vz) --- Use the reflection formula (Atlas, p. 496) if z not in right half plane; if REALPART(vz) < 0.0 then return EXPT(-1.0,v)*BesselIAsymptOrder(v,-vz) vinv := 1.0/v opzsqroh := SQRT(1.0+z*z) eta := opzsqroh + LOG(z/(1.0+opzsqroh)) p := 1.0/opzsqroh p2 := p*p p4 := p2*p2 u0p := 1. u1p := 1.0/8.0*p-5.0/24.0*p*p2 u2p := (9.0/128.0+(-77.0/192.0+385.0/1152.0*p2)*p2)*p2 u3p := (75.0/1024.0+(-4563.0/5120.0+(17017.0/9216.0-85085.0/82944.0*p2)_ *p2)*p2)*p2*p u4p := (3675.0/32768.0+(-96833.0/40960.0+(144001.0/16384.0+(-7436429.0/663552.0+37182145.0/7962624.0*p2)*p2)*p2)*p2)*p4 u5p := (59535.0/262144.0+(-67608983.0/9175040.0+(250881631.0/5898240.0+(-108313205.0/1179648.0+(5391411025.0/63700992.0-5391411025.0/191102976.0*p2)*p2)*p2)*p2)*p2)*p4*p hornerresult := horner([u5p,u4p,u3p,u2p,u1p,u0p],vinv) EXP(v*eta)/(SQRT(2.0*Pi*v)*SQRT(opzsqroh))*hornerresult ---See also Olver, pp. 376-382 BesselKAsymptOrder (v,vz) == z := vz/v vinv := 1.0/v opzsqroh := SQRT(1.0+z*z) eta := opzsqroh + LOG(z/(1.0+opzsqroh)) p := 1.0/opzsqroh p2 := p**2 p4 := p2**2 u0p := 1. u1p := (1.0/8.0*p-5.0/24.0*p**3)*(-1.0) u2p := (9.0/128.0+(-77.0/192.0+385.0/1152.0*p2)*p2)*p2 u3p := ((75.0/1024.0+(-4563.0/5120.0+(17017.0/9216.0-85085.0/82944.0*p2)_ *p2)*p2)*p2*p)*(-1.0) u4p := (3675.0/32768.0+(-96833.0/40960.0+(144001.0/16384.0+(-7436429.0/663552.0+37182145.0/7962624.0*p2)*p2)*p2)*p2)*p4 u5p := ((59535.0/262144.0+(-67608983.0/9175040.0+(250881631.0/5898240.0+(-108313205.0/1179648.0+(5391411025.0/63700992.0-5391411025.0/191102976.0*p2)*p2)*p2)*p2)*p2)*p4*p)*(-1.0) hornerresult := horner([u5p,u4p,u3p,u2p,u1p,u0p],vinv) SQRT(PI/(2.0*v))*EXP(-v*eta)/(SQRT(opzsqroh))*hornerresult @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}