-- Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd. -- All rights reserved. -- Copyright (C) 2007-2008, Gabriel Dos Reis. -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are -- met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical Algorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS -- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import '"vmlisp" )package "BOOT" $ruleSetsInitialized := false --% Mode and Type Resolution Rule Data and Ruleset Creation --% resolveTT Rules -- These rules are applied only once at the outermost position of a term -- some things can't be done by term rewriting conveniently (e.g. set -- difference), so a form is created which is interpreted by -- resolveTTRed later. The meanings of these forms are: -- Incl(x,y): y if x is a member of y, failed otherwise -- SetEqual(x,y): x if y is a permutation of x, failed otherwise -- SetComp(x,y): x-y, if y is a subset of x, failed otherwise -- SetInter(x,y): intersection of x and y, if nonempty, failed otherwise -- SetDiff(x,y): x-y, if x and y have a nonempty intersection, failed ... -- These first rules will be expanded for each of MP, DMP and NDMP $mpolyTTRules == '( _ ((Resolve (RN) (mpoly1 x t1)) . (mpoly1 x (Resolve (RN) t1))) _ ((Resolve (UP x t1) (mpoly1 y t2)) . _ (Resolve t1 (mpoly1 (Incl x y) t2))) _ ((Resolve (mpoly1 x t1) (G t2)) . _ (mpoly1 x (G (VarEqual t1 t2)))) _ ((Resolve (VARIABLE x) (mpoly1 y t2)) . _ (mpoly1 (Incl x y) t2)) _ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ (mpoly1 (SetEqual x y) (Resolve t1 t2))) _ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ (mpoly1 x (Resolve t1 (mpoly1 (SetComp y x) t2)))) _ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ (mpoly1 y (Resolve (mpoly1 (SetComp x y) t1) t2))) _ ((Resolve (mpoly1 x t1) (mpoly1 y t2)) . _ (mpoly1 (SetInter x y) (Resolve _ (mpoly1 (SetDiff x y) t1) (mpoly1 (SetDiff y x) t2)))) _ ) -- These are the general rules, excluding those above. $generalTTRules == '( _ ((Resolve (L (L t1)) (M t2)) . (M (Resolve t1 t2))) _ ((Resolve (EQ t1) (B)) . (B)) _ ((Resolve (SY) t1) . (Resolve (P (I)) t1)) _ ((Resolve (M t1) (SM x t2)) . (M (Resolve t1 t2))) _ ((Resolve (M t1) (RM x y t2)) . (M (Resolve t1 t2))) _ ((Resolve (SM x t1) (RM y y t2)) . _ (SM (VarEqual x y) (Resolve t1 t2))) _ ((Resolve (V t1) (L t2)) . (V (Resolve t1 t2))) _ ((Resolve (FF t1) (FR t2)) . (FR (Resolve t1 t2))) _ ((Resolve (F) (RN)) . (F) ) _ _ ((Resolve (OV x) (OV y)) . (OV (SetUnion x y))) _ ((Resolve (P t1) (UP y t2)) . (Resolve (P t1) t2)) _ _ ((Resolve (UP y t1) (G t2)) . (UP y (G (VarEqual t1 t2)))) _ ((Resolve (P t1) (P t2)) . (P (Resolve t1 t2))) _ ((Resolve (G t1) (G t2)) . (G (Resolve t1 t2))) _ ((Resolve (G t1) (P t2)) . (P (G (VarEqual t1 t2)))) _ _ ((Resolve (AF t1) (EF t2)) . (EF (Resolve t1 t2))) _ ((Resolve (AF t1) (LF t2)) . (LF (Resolve t1 t2))) _ ((Resolve (AF t1) (FE t2)) . (FE (Resolve t1 t2))) _ ((Resolve (EF t1) (LF t2)) . (LF (Resolve t1 t2))) _ ((Resolve (EF t1) (FE t2)) . (FE (Resolve t1 t2))) _ ((Resolve (LF t1) (FE t2)) . (FE (Resolve t1 t2))) _ _ ((Resolve (RN) (P t1)) . (P (Resolve (RN) t1))) _ ((Resolve (RN) (UP x t1)) . (UP x (Resolve (RN) t1))) _ ((Resolve (RN) (UPS x t1)) . (UPS x (Resolve (RN) t1))) _ ((Resolve (RN) (CFPS x t1)) . (CFPS x (Resolve (RN) t1))) _ _ ((Resolve (RR) (EF t1)) . (EF (Resolve (RR) t1))) _ ((Resolve (P t1) (AF t2)) . (AF (Resolve t1 t2 ))) _ ((Resolve (P t1) (EF t2)) . (EF (Resolve t1 t2 ))) _ ((Resolve (P t1) (LF t2)) . (LF (Resolve t1 t2 ))) _ _ ((Resolve (MP x t1) (DMP y t2)) . _ (MP (SetEqual x y) (Resolve t1 t2))) _ ((Resolve (MP x t1) (DMP y t2)) . _ (MP x (Resolve t1 (DMP (SetComp y x) t2)))) _ ((Resolve (MP x t1) (DMP y t2)) . _ (MP y (Resolve (MP (SetComp x y) t1) t2))) _ ((Resolve (MP x t1) (DMP y t2)) . _ (MP (SetInter x y) (Resolve _ (MP (SetDiff x y) t1) (DMP (SetDiff y x) t2)))) _ _ ((Resolve (MP x t1) (NDMP y t2)) . _ (MP (SetEqual x y) (Resolve t1 t2))) _ ((Resolve (MP x t1) (NDMP y t2)) . _ (MP x (Resolve t1 (NDMP (SetComp y x) t2)))) _ ((Resolve (MP x t1) (NDMP y t2)) . _ (MP y (Resolve (MP (SetComp x y) t1) t2))) _ ((Resolve (MP x t1) (NDMP y t2)) . _ (MP (SetInter x y) (Resolve _ (MP (SetDiff x y) t1) (NDMP (SetDiff y x) t2)))) _ _ ((Resolve (DMP x t1) (NDMP y t2)) . _ (DMP (SetEqual x y) (Resolve t1 t2))) _ ((Resolve (DMP x t1) (NDMP y t2)) . _ (DMP x (Resolve t1 (NDMP (SetComp y x) t2)))) _ ((Resolve (DMP x t1) (NDMP y t2)) . _ (DMP y (Resolve (DMP (SetComp x y) t1) t2))) _ ((Resolve (DMP x t1) (NDMP y t2)) . _ (DMP (SetInter x y) (Resolve _ (DMP (SetDiff x y) t1) (NDMP (SetDiff y x) t2)))) _ ) -- The following creates the ruleset createResolveTTRules() == -- expand multivariate polynomial rules mps := '(MP DMP NDMP) mpRules := "append"/[substitute(mp,'mpoly1,$mpolyTTRules) for mp in mps] $Res := CONS('(t1 t2 x y), EQSUBSTLIST($nameList,$abList,append($generalTTRules,mpRules))) true --% resolveTM Rules -- Same rules as for resolveTT, with two exceptions: -- Diff(x,y): removes y from x, if possible, failed otherwise -- SetIncl(x,y): y if x is a subset of y, failed otherwise -- These first rules will be expanded for each of MP, DMP and NDMP $mpolyTMRules == '( _ ((Resolve (mpoly1 x t1) (P t2)) . (Resolve t1 (P t2))) _ ((Resolve (mpoly1 (x) t1) (UP x t2)) . (UP x (Resolve t1 t2))) _ ((Resolve (mpoly1 x t1) (UP y t2)) . _ (UP y (Resolve (mpoly1 (Diff x y) t1) t2))) _ ((Resolve (UP x t1) (mpoly1 y t2)) . _ (Resolve t1 (mpoly1 (Incl x y) t2))) _ ((Resolve (VARIABLE x) (mpoly1 y t2)) . _ (mpoly1 (Incl x y) (Resolve (I) t2))) _ ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _ (Resolve t1 (mpoly2 (SetIncl x y) t2))) _ ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _ (mpoly2 y (Resolve (mpoly1 (SetComp x y) t1) t2))) _ ((Resolve (mpoly1 x t1) (mpoly2 y t2)) . _ (Resolve (mpoly1 (SetDiff x y) t1) (mpoly2 y t2))) _ ) -- These are the general rules, excluding those above. $generalTMRules == '( _ ((Resolve (VARIABLE x) (P t1)) . (P (Resolve (I) t1))) _ ((Resolve (VARIABLE x) (UP y t1)) . _ (UP (VarEqual x y) (Resolve (I) t1))) _ ((Resolve (VARIABLE x) (UPS y t1)) . _ (UPS (VarEqual x y) (Resolve (I) t1))) _ ((Resolve (VARIABLE x) (CFPS y t1)) . _ (CFPS (VarEqual x y) (Resolve (RN) t1))) _ ((Resolve (VARIABLE x) (ELFPS y t1)) . _ (ELFPS (VarEqual x y) (Resolve (RN) t1))) _ ((Resolve (VARIABLE x) (EF t1)) . (EF t1)) _ ((Resolve (L (L (SY))) (M _*_*)) . (M (P (I)))) _ ((Resolve (L (L (SY))) (SM x _*_*)) . (SM x (P (I)))) _ ((Resolve (L (L t1)) (M t2)) . (M (Resolve t1 t2))) _ ((Resolve (L (L t1)) (SM x t2)) . (SM x (Resolve t1 t2))) _ ((Resolve (L (L t1)) (RM x y t2)) . (RM x y (Resolve t1 t2))) _ ((Resolve (SY) t1) . (Resolve (P (I)) t1)) _ ((Resolve (VARIABLE x) t1) . (Resolve (P (I)) t1)) _ ((Resolve (SM x t1) (M t2)) . (M (Resolve t1 t2))) _ ((Resolve (RM x y t1) (M t2)) . (M (Resolve t1 t2))) _ _ ((Resolve (M t1) (L _*_*)) . (L (L t1))) _ ((Resolve (SM x t1) (L _*_*)) . (L (L t1))) _ ((Resolve (RM x y t1) (L _*_*)) . (L (L t1))) _ ((Resolve (M t1) (L t2)) . (L (Resolve (L t1) t2))) _ ((Resolve (SM x t1) (L t2)) . (L (Resolve (L t1) t2))) _ ((Resolve (RM x y t1) (L t2)) . (L (Resolve (L t1) t2))) _ _ ((Resolve (M t1) (V _*_*)) . (V (V t1))) _ ((Resolve (SM x t1) (V _*_*)) . (V (V t1))) _ ((Resolve (RM x y t1) (V _*_*)) . (V (V t1))) _ ((Resolve (M t1) (V t2)) . (V (Resolve (V t1) t2))) _ ((Resolve (SM x t1) (V t2)) . (V (Resolve (V t1) t2))) _ ((Resolve (RM x y t1) (V t2)) . (V (Resolve (V t1) t2))) _ _ ((Resolve (L t1) (V t2)) . (V (Resolve t1 t2))) _ ((Resolve (V t1) (L t2)) . (L (Resolve t1 t2))) _ ((Resolve (FF t1) (FR t2)) . (FR (Resolve t1 t2))) _ ((Resolve (UP x t1) (P t2)) . (Resolve t1 (P t2))) _ ) -- Private abbreviation table for resolve rules $resolveAbbreviations == '( _ (P . Polynomial) _ (G . Gaussian) _ (L . List) _ (M . Matrix) _ (EQ . Equation) _ (B . Boolean) _ (SY . Symbol) _ (I . Integer) _ (SM . SquareMatrix) _ (RM . RectangularMatrix) _ (V . Vector) _ (FF . FactoredForm) _ (FR . FactoredRing) _ (RN . RationalNumber) _ (F . Float) _ (OV . OrderedVariableList) _ (UP . UnivariatePoly) _ (DMP . DistributedMultivariatePolynomial) _ (MP . MultivariatePolynomial) _ (HDMP . HomogeneousDistributedMultivariatePolynomial) _ (QF . QuotientField) _ (RF . RationalFunction) _ (RE . RadicalExtension) _ (RR . RationalRadicals) _ (UPS . UnivariatePowerSeries) _ (CFPS . ContinuedFractionPowerSeries) _ (ELFPS . EllipticFunctionPowerSeries) _ (EF . ElementaryFunction) _ (VARIABLE . Variable) _ ) $newResolveAbbreviations == '( _ (P . Polynomial) _ (G . Complex) _ (L . List) _ (M . Matrix) _ (EQ . Equation) _ (B . Boolean) _ (SY . Symbol) _ (I . Integer) _ (SM . SquareMatrix) _ (RM . RectangularMatrix) _ (V . Vector) _ (FF . Factored) _ (FR . Factored) _ (F . Float) _ (OV . OrderedVariableList) _ (UP . UnivariatePolynomial) _ (DMP . DistributedMultivariatePolynomial) _ (MP . MultivariatePolynomial) _ (HDMP . HomogeneousDistributedMultivariatePolynomial) _ (QF . Fraction) _ (UPS . UnivariatePowerSeries) _ (VARIABLE . Variable) _ ) -- The following creates the ruleset createResolveTMRules() == -- expand multivariate polynomial rules mps := '(MP DMP NDMP) mpRules0 := "append"/[substitute(mp,'mpoly1,$mpolyTMRules) for mp in mps] mpRules := "append"/[substitute(mp,'mpoly2,mpRules0) for mp in mps] $ResMode := CONS('(t1 t2 x y), EQSUBSTLIST($nameList,$abList,append(mpRules,$generalTMRules))) true createTypeEquivRules() == -- used by eqType, for example $TypeEQ := CONS('(t1), EQSUBSTLIST($nameList,$abList,'( ((QF (P t1)) . (RF t1)) ((QF (I)) . (RN)) ((RE (RN)) . (RR)) ))) $TypeEqui := CONS(CAR $TypeEQ, [[b,:a] for [a,:b] in CDR $TypeEQ]) true initializeRuleSets() == $abList: local := ASSOCLEFT $newResolveAbbreviations $nameList: local := ASSOCRIGHT $newResolveAbbreviations createResolveTTRules() createResolveTMRules() createTypeEquivRules() $ruleSetsInitialized := true true