;; Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ;; All rights reserved. ;; Copyright (C) 2007-2011, Gabriel Dos Reis. ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; - Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; - Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in ;; the documentation and/or other materials provided with the ;; distribution. ;; ;; - Neither the name of The Numerical ALgorithms Group Ltd. nor the ;; names of its contributors may be used to endorse or promote products ;; derived from this software without specific prior written permission. ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ; NAME: META/LISP Parser Generator and Lexical Analysis Utilities (Parsing) ; ; PURPOSE: This package provides routines to support the Metalanguage ; translator writing system. Metalanguage is described ; in META/LISP, R.D. Jenks, Tech Report, IBM T.J. Watson Research Center, ; 1969. Familiarity with this document is assumed. ; ; The parser generator itself is described in either the file ; MetaBoot.lisp (hand-coded version) or the file MetaMeta.lisp (machine ; generated from self-descriptive Meta code), both of which load themselves ; into package Parsing. ; CONTENTS: ; ; 0. Current I/O Stream definition ; ; 1. Data structure declarations (defstructs) for parsing objects ; ; A. Line Buffer ; B. Stack ; C. Token ; D. Reduction ; ; 2. Recursive descent parsing support routines ; A. Stacking and retrieving reductions of rules. ; B. Applying metagrammatical elements of a production (e.g., Star). ; ; 3. Routines for handling lexical scanning ; ; A. Manipulating the token stack and reading tokens ; B. Error handling ; C. Constructing parsing procedures ; D. Managing rule sets ; ; 4. Tracing routines ; ; 5. Routines for inspecting and resetting total I/O system state ; ; METALEX.LISP: Meta file handling, auxiliary parsing actions and tokenizing ; ; BOOTLEX.LISP: Boot file handling, auxiliary parsing actions and tokenizing ; NEWMETA.LISP: Boot parsing (import-module "lexing") (import-module "macros") (in-package "BOOT") ; 0. Current I/O Stream definition (defparameter out-stream t "Current output stream.") (defparameter File-Closed nil "Way to stop EOF tests for console input.") ; 1. Data structure declarations (defstructs) for parsing objects ; ; A. Line Buffer ; 1A. A Line Buffer ; ; The philosophy of lines is that ; ; a) NEXT LINE will always get you a non-blank line or fail. ; b) Every line is terminated by a blank character. ; ; Hence there is always a current character, because there is never a non-blank line, ; and there is always a separator character between tokens on separate lines. ; Also, when a line is read, the character pointer is always positioned ON the first ; character. ; FUNCTIONS DEFINED IN THIS SECTION: ; ; Line-New-Line, Line-Advance-Char, Line-Past-End-P, Line-At-End-P ; Make-Line (defun Line-Print (line) (format out-stream "~&~5D> ~A~%" (|lineNumber| line) (|lineBuffer| Line)) (format out-stream "~v@T^~%" (+ 7 (|lineCurrentIndex| line)))) ; *** Next Line (defun make-string-adjustable (s) (cond ((adjustable-array-p s) s) (t (make-array (array-dimensions s) :element-type 'character :adjustable t :initial-contents s)))) (defun get-a-line (stream) (if (and (IS-CONSOLE stream) (not |$leanMode|)) (|printPrompt|)) (let ((ll (read-a-line stream))) (if (stringp ll) (make-string-adjustable ll) ll))) (defparameter Current-Fragment nil "A string containing remaining chars from readline; needed because Symbolics read-line returns embedded newlines in a c-m-Y.") (defun input-clear () (setq Current-Fragment nil)) (defun Next-Lines-Clear () (setq |$lineStack| nil)) (defun Next-Lines-Show () (and |$lineStack| (format t "Currently preparsed lines are:~%~%")) (mapcar #'(lambda (line) (format t "~&~5D> ~A~%" (car line) (cdr Line))) |$lineStack|)) ; 3. Routines for handling lexical scanning ; ; Lexical scanning of tokens is performed off of the current line. No ; token can span more than 1 line. All real I/O is handled in a line-oriented ; fashion (in a slight paradox) below the character level. All character ; routines implicitly assume the parameter |$spadLine|. We do not make ; |$spadLine| an explicit optional parameter for reasons of efficiency. (defmacro current-line-print () '(Line-Print |$spadLine|)) (defmacro current-line-show () `(if (|linePastEnd?| |$spadLine|) (format t "~&The current line is empty.~%") (progn (format t "~&The current line is:~%~%") (current-line-print)))) (defmacro current-line-clear () `(|lineClear!| |$spadLine|)) (defun read-a-line (&optional (stream t)) (let (cp) (if (and Current-Fragment (> (length Current-Fragment) 0)) (let ((line (with-input-from-string (s Current-Fragment :index cp :start 0) (read-line s nil nil)))) (setq Current-Fragment (subseq Current-Fragment cp)) line) (prog nil (if (stream-eof in-stream) (progn (setq File-Closed t *EOF* t) (|lineNewLine!| (make-string 0) |$spadLine|) (return nil))) (if (setq Current-Fragment (read-line stream)) (return (read-a-line stream))))))) ; *** Print New Line (defparameter Printer-Line-Stack (|makeStack|) "Stack of output listing lines waiting to print. [local to PRINT-NEW-LINE]") (defparameter Read-Quietly nil "Whether or not to produce an output listing. [local to PRINT-NEW-LINE]") (defun Print-New-Line (string &optional (strm |$OutputStream|)) "Makes output listings." (if Read-Quietly (|stackPush!| (copy-tree string) Printer-Line-Stack) (progn (mapc #'(lambda (x) (format strm "; ~A~%" x) (terpri)) (|reverse!| (|stackStore| Printer-Line-Stack))) (|stackClear!| Printer-Line-Stack) (format strm "~&; ~A~%" string)))) ; 1C. Token (defun Token-Print (token) (format out-stream "(token (symbol ~S) (type ~S))~%" (|tokenSymbol| token) (|tokenType| token))) (defun reduce-stack-show () (let ((store (|stackStore| |$reduceStack|)) (*print-pretty* t)) (if store (progn (format t "~%Reduction stack contains:~%") (mapcar #'(lambda (x) (if (eq (type-of x) 'token) (describe x) (print x))) (|stackStore| |$reduceStack|))) (format t "~%There is nothing on the reduction stack.~%")))) (defun token-stack-show () (if (= |$validTokens| 0) (format t "~%There are no valid tokens.~%") (format t "~%The number of valid tokens is ~S.~%" |$validTokens|)) (if (> |$validTokens| 0) (progn (format t "The current token is~%") (describe |$currentToken|))) (if (> |$validTokens| 1) (progn (format t "The next token is~%") (describe |$nextToken|))) (if (|tokenType| |$priorToken|) (progn (format t "The prior token was~%") (describe |$priorToken|)))) ; Parsing of operator tokens depends on tables initialized by BOTTOMUP.LISP (defun |PARSE-OperatorFunctionName| () (let ((id (|makeSymbolOf| (or (|matchCurrentToken| 'keyword) (|matchCurrentToken| 'gliph) (|matchCurrentToken| 'special-char))))) (when (and id (member id |$OperatorFunctionNames|)) (|pushReduction| '|PARSE-OperatorFunctionName| id) (action (|advanceToken|))))) (defun make-adjustable-string (n) (make-array (list n) :element-type 'character :adjustable t)) (defun get-number-token (token) "Take a number off the input stream." (prog ((buf (make-adjustable-string 0))) nu1 (suffix (|currentChar|) buf) ; Integer part (let ((next-chr (|nextChar|))) (cond ((digitp next-chr) (|advanceChar!|) (go nu1)))) (|advanceChar!|) (return (|tokenInstall| (read-from-string buf) 'number token (size buf) ;used to keep track of digit count )))) ; *** 5. META Error Handling (defparameter $num_of_meta_errors 0) (defparameter Meta_Errors_Occurred nil "Did any errors occur") (defun IOStreams-Show () (format t "~&Input is coming from ~A, and output is going to ~A.~%" (or (streamp in-stream) "the keyboard") (or (streamp out-stream) "the screen")) (format t "~:[~;The current input stream is logically closed.~%~]~%" File-Closed)) (defmacro IOStreams-Set (input output) `(setq in-stream ,input out-stream ,output)) (defmacro IOStreams-Clear (&optional (in t) (out t)) `(progn (and (streamp in-stream) (close in-stream)) (and (streamp out-stream) (close out-stream)) (setq File-Closed nil) (IOStreams-Set ,in ,out))) ; 2B. Routines for applying certain metagrammatical elements ; of a production (e.g., Star). ; Must means that if it is not present in the token stream, it is a syntax error. ; FUNCTIONS DEFINED IN THIS SECTION: ; ; Star, Bang, Must, Optional, Action (defmacro Star (lab prod) "Succeeds if there are one or more of PROD, stacking as one unit the sub-reductions of PROD and labelling them with LAB. E.G., (Star IDs (parse-id)) with A B C will stack (3 IDs (A B C)), where (parse-id) would stack (1 ID (A)) when applied once." `(prog ((oldstacksize (|stackSize| |$reduceStack|))) (if (not ,prod) ;(progn (format t "~&Star failed for ~A.~%" ',lab) (return nil))) (return nil)) loop (if (not ,prod) (let* ((newstacksize (|stackSize| |$reduceStack|)) (number-of-new-reductions (- newstacksize oldstacksize))) ; (format t "~&Starring ~A with ~D new reductions.~%" ; ',lab number-of-new-reductions) (if (> number-of-new-reductions 0) (return (do ((i 0 (1+ i)) (accum nil)) ((= i number-of-new-reductions) (|pushReduction| ',lab accum) ; (format t "~&Star accumulated ~D reductions.~%" ; (length accum)) (return t)) (push (|popStack1|) accum))) (return t))) (go loop)))) (defmacro Bang (lab prod) "If the execution of prod does not result in an increase in the size of the stack, then stack a NIL. Return the value of prod." `(progn (setf (|stackUpdated?| |$reduceStack|) nil) (let* ((prodvalue ,prod) (updated (|stackUpdated?| |$reduceStack|))) (if updated (progn ; (format t "~&Banged ~A and I think the stack is updated!~%" ',lab) prodvalue) (progn (|pushReduction| ',lab nil) prodvalue))))) (defmacro must (dothis &optional (this-is nil) (in-rule nil)) `(or ,dothis (spad_syntax_error ,this-is ,in-rule))) ; Optional means that if it is present in the token stream, that is a good thing, ; otherwise don't worry (like [ foo ] in BNF notation). (defun Optional (dothis) (or dothis t)) ; Action is something we do as a consequence of successful parsing; it is ; inserted at the end of the conjunction of requirements for a successful ; parse, and so should return T. (defun action (dothis) (or dothis t)) ; 3A. Manipulating the token stack and reading tokens ; This section is broken up into 3 levels: ; ; (0) String grabbing: Match String, Match Advance String ; (1) Token handling: Current Token, Next Token, Advance Token ; (2) Character handling: Current Char, Next Char, Advance Char ; (3) Line handling: Next Line, Print Next Line ; (X) Random Stuff ; 3A (0). String grabbing ; String grabbing is the art of matching initial segments of the current ; line, and removing them from the line before the get tokenized if they ; match (or removing the corresponding current tokens). ; FUNCTIONS DEFINED IN THIS SECTION: ; ; Match-Advance-String (defun Match-Advance-String (x) "Same as matchString except if successful, advance inputstream past X." (let ((y (if (>= (length (string x)) (length (string (|quoteIfString| (|currentToken|))))) (|matchString| x) nil))) ; must match at least the current token (if y (progn (incf (|lineCurrentIndex| |$spadLine|) y) (if (not (|linePastEnd?| |$spadLine|)) (setf (|lineCurrentChar| |$spadLine|) (elt (|lineBuffer| |$spadLine|) (|lineCurrentIndex| |$spadLine|))) (setf (|lineCurrentChar| |$spadLine|) #\Space)) (setq |$priorToken| (|makeToken| (intern (string x)) 'identifier |$nonblank|)) t)))) (defun match-advance-keyword (str) (and (|matchToken| (|currentToken|) 'keyword (intern str)) (action (|advanceToken|)))) (defun match-advance-special (str) (and (|matchToken| (|currentToken|) 'special-char (character str)) (action (|advanceToken|)))) (defun match-special (str) (|matchToken| (|currentToken|) 'special-char (character str))) (defun match-keyword-next (str) (|matchToken| (|nextToken|) 'keyword (intern str))) (defun initial-substring-p (part whole) "Returns length of part if part matches initial segment of whole." (let ((x (string<= part whole))) (and x (= x (length part)) x))) ; 3B. Error handling (defparameter errcol nil) (defparameter line nil) (defun conversation (x y) (prog (u) a (|reduceStackClear|) (setq u (namederrset 'spad_reader (conversation1 x y) )) (cond (*eof* (return nil)) ((atom u) (go a)) ((return (car u)))))) (defparameter ulcasefg nil "") (defun conversation1 (firstfun procfun) (prog nil top(cond ((not (|currentChar|)) (return nil)) ((and (|currentToken|) (|nextToken|)) (go top)) ((compfin) (return 't)) ((and (funcall firstfun) (or (funcall procfun (|popStack1|)))) (go top)) ((compfin) (return 't)) ) (spad_syntax_error) (go top))) (defun termchr () "Is CHR a terminating character?" (position (|currentChar|) " *,;<>()[]/\\")) (defun compfin () (or (|matchString| ")fin") (|matchString| ".FIN"))) ; 3 C. Constructing parsing procedures ; FUNCTIONS DEFINED IN THIS SECTION: ; ; Make-Parse-Function, GetGenSym (MAKEPROP 'PROGN 'NARY T) ; Setting for Make-Parse-Function (defun make-parse-function (l op) (if (flagp op 'nary) (setq l (make-parse-func-flatten-1 l op nil))) (make-parse-function1 l op)) (defun make-parse-func-flatten (x op) (cond ((atom x) x) ((eq (car x) op) (cons op (make-parse-func-flatten-1 (cdr x) op nil))) (t (cons (make-parse-func-flatten (car x) op) (make-parse-func-flatten (cdr x) op))))) (defun make-parse-func-flatten-1 (l op r) (let (x) (if (null l) r (make-parse-func-flatten-1 (cdr l) op (append r (if (eqcar (setq x (make-parse-func-flatten (car l) op)) op) (cdr x) (list x))))))) (defun make-parse-function1 (l op) (let (x) (case op (plus (cond ((eq 0 (setq x (length (setq l (s- l '(0 (zero))))))) 0) ((eq 1 x) (car l)) (t `(+ . ,l)))) (times (cond ((s* l '(0 (zero))) 0) ((eq 0 (setq x (length (setq l (s- l '(1 (one))))))) 1) ((eq 1 x) (car l)) (t `(times . ,l)) )) (quotient (cond ((> (length l) 2) (fail)) ((eq 0 (car l)) 0) ((eq (cadr l) 1) (car l)) (t `(quotient . ,l)) )) (minus (cond ((cdr l) (fail)) ((numberp (setq x (car l))) (minus x)) ((eqcar x 'minus) (cadr x)) (t `(minus . ,l)) )) (- (cond ((> (length l) 2) (fail)) ((equal (car l) (cadr l)) '(zero)) ((member (car l) '(0 (zero))) (make-parse-function (cdr l) 'minus)) ((member (cadr l) '(0 (zero))) (car l)) ((eqcar (cadr l) 'minus) (make-parse-function (list (car l) (cadadr l)) 'plus)) (t `(- . ,l)) )) (expt (cond ((> (length l) 2) (fail)) ((eq 0 (cadr l)) 1) ((eq 1 (cadr l)) (car l)) ((member (car l) '(0 1 (zero) (one))) (car l)) (t `(expt . ,l)) )) (or (cond ((member 't l) ''t) ((eq 0 (setq x (length (setq l (delete nil l))))) nil) ((eq 1 x) (car l)) (t `(or . ,l)) )) (|or| (cond ((member 't l) 't) ((eq 0 (setq x (length (setq l (delete nil l))))) nil) ((eq 1 x) (car l)) (t `(|or| . ,l)) )) (null (cond ((cdr l) (fail)) ((eqcar (car l) 'null) (cadar l)) ((eq (car l) 't) nil) ((null (car l)) ''t) (t `(null . ,l)))) (|and| (cond ((eq 0 (setq x (length (setq l (delete 't (delete 'true l)))))) 't) ((eq 1 x) (car l)) (t `(|and| . ,l)) )) (and (cond ((eq 0 (setq x (length (setq l (delete 't (delete 'true l)))))) ''t) ((eq 1 x) (car l)) (t `(and . ,l)) )) (progn (cond ((and (not (atom l)) (null (last l))) (cond ((cdr l) `(progn . ,l)) (t (car l)))) ((null (setq l (delete nil l))) nil) ((cdr l) `(progn . ,l)) (t (car l)) )) (seq (cond ((eqcar (car l) 'exit) (cadar l)) ((cdr l) `(seq . ,l)) (t (car l)) )) (list (cond ((null l) nil) (t `(list . ,l)))) (cons (cond ((cdr l) `(cons . ,l)) (t (car l)) )) (t (cons op l) )))) (defparameter /genvarlst nil "??") (defun transpgvar (metapgvar) (remove-duplicates metapgvar)) (defparameter /gensymlist nil "List of rule local variables generated by getgensym.") (defun getgensym (n) "Used to create unique numerically indexed local variables for the use of rules." (loop (let ((m (length /gensymlist))) (if (< m n) (setq /gensymlist (|append!| /gensymlist `(,(intern (format nil "G~D" (1+ m)))))) (return (nth (1- n) /gensymlist)))))) ; 3 D. Managing rule sets (defparameter bac nil "") (defparameter keyfn nil "") (defparameter /metaoption "") (defparameter tline nil "") (defparameter rs nil "") (defun getrulefunlists (rootfun rs) (let* ((metapfx (or (get rootfun 'metapfx) "")) (mainfun (internl metapfx (pname rootfun))) (mainfunstr (pname mainfun)) (flnam (internl mainfunstr "FUN")) (pfx-funlist (union (cons mainfun (if (atom (eval flnam)) nil (eval flnam))) (mapcar #'(lambda (x) (internl metapfx (pname x))) (assocleft rs)))) n unpfx-funlist) (setf (symbol-value flnam) pfx-funlist) (if (not (lessp (setq n (length metapfx)) 0)) (setq unpfx-funlist (mapcar #'(lambda (x) (intern (subseq (symbol-name (copy-symbol (pname x))) n))) pfx-funlist))) (if unpfx-funlist (list pfx-funlist unpfx-funlist)))) ; 4. Tracing routines (defparameter debugmode 'yes "Can be either YES or NO") (defun reduction-print (y rule) (format t "~&") (cond ((eq y t) (|sayBrightly| `(|%b| ,rule |%d| " reduced"))) (y (|sayBrightlyNT| `(|%b| ,rule |%d|)) (format t " reduced ~A~%" y))) y) (defmacro tracemeta (&rest l) `(trmeta ',l)) (defparameter /depth 0 "Used in Debug.lisp.") (defun trmeta (l) (setq /depth 0) (mapc #'trmeta1 l)) (defun trmeta1 (x) (let (y) (if (not (fboundp x)) (if (fboundp (setq y (internl $lastprefix (pname x)))) (moan (format nil "********* ~S RENAMED AS ~S" x (setq x y))) (croak (format nil "********* ~S MUST BE GIVEN PREFIX" x)))) (/embed-1 x (sublislis (list (pname x) x (gensym)) '(nam* fun* argl*) '(lambda (&rest argl*) (prog (v tok) (terpri) (trblanks (* 2 /depth)) (setq /depth (+ 1 /depth)) (princ (stringimage /depth)) (princ "<") (princ nam*) (trargprint argl*) (princ "/") (princ "chr= ") (prin1 (|currentChar|)) (princ "/tok= ") (prin1 (setq tok (current-symbol))) (princ "/col= ") (prin1 (|lineCurrentIndex| |$spadLine|)) ;; (princ "/icol= ") (prin1 initcolumn) (cond ( (not nonblank) (go a1))) (princ "/nblnk= T") a1 ;;(cond (ok (go b1))) (princ "/ok= NIL") b1 ;;(cond ( (not stackx) (go c1))) (princ "/stackx= ") ;;(prin1 stackx) c1 (cond ( (not (identp tok)) (go d1))) (princ "/isid= ") ;; (princ (cond (isid "T") (t "NIL"))) d1 (princ "/stack= ") (prin1 (|stackStore| |$reduceStack|)) (setq v (apply fun* argl*)) (setq /depth (- /depth 1)) (terpri) (trblanks (* 2 /depth)) (princ (stringimage (\1+ /depth))) (princ ">") (princ nam*) (princ "/chr= ") (prin1 (|currentChar|)) (princ "/tok= ") (prin1 (setq tok (current-symbol))) (princ "/col= ") (prin1 (|lineCurrentIndex| |$spadLine|)) (if (not nonblank) (go a2)) (princ "/nblnk= ") (princ (if nonblank "T" "NIL")) a2 ;;(if ok (go b2)) (princ "/ok= ") (prin1 ok) b2 ;;(if (not stackx) (go c2)) (princ "/stackx1= ") (prin1 stackx) c2 (if (not (identp tok)) (go d2)) (princ "/isid= ") ;; (princ (if isid "T" "NIL")) d2 (princ "/stack= ") (prin1 (|stackStore| |$reduceStack|)) (princ "/value= ") (prin1 v) (return v))))))) (defun /embed-1 (x y) (princ (strconc (pname x) " embedded")) (terpri) (/embed-q x y)) (defvar /embednames) (defun /embed-q (x y) (setq /embednames (cons x /embednames)) (embed x (cond ((eqcar y 'lambda) y) ((eqcar y 'before) `(lambda ,(cadr y) (prog2 ,(caddr y) ,(cons 'funcall (cons x (cadr y)))))) ((eqcar y 'after) `(lambda ,(cadr y) (prog1 ,(cons 'funcall (cons x (cadr y))) ,(caddr y)))))) (/embedreply)) (defun /embedreply () (if (atom (embedded)) '(|none| |embedded|) (append (embedded) (list '|embedded|)))) (defparameter mdeftrace nil "") (defun /mdef (x) (let (u) (cond ((atom x) x) ((or (null (atom (car x))) (not (mbpip (car x)))) (mapcar #'/mdef x)) ((equal x (setq u (mdef (car x) x))) x) (mdeftrace (print x) (princ " --> ") (print u) (/mdef u)) ((/mdef u))))) (defun trargprint (l) (mapc #'(lambda (x) (princ " / ") (prin1 x)) l)) (defun trblanks (n) (do ((i 1 (1+ i))) ((> i n)) (princ " "))) ; 5. Routines for inspecting and resetting total I/O system state ; ; The package largely assumes that: ; ; A. One I/O stream pair is in effect at any moment. ; B. There is a Current Line ; C. There is a Current Token and a Next Token ; D. There is a Reduction Stack ; ; This state may be examined and reset with the procedures IOSTAT and IOCLEAR. (defun IOStat () "Tell me what the current state of the parsing world is." (current-line-show) (if $SPAD (next-lines-show)) (token-stack-show) nil) (defun IOClear (&optional (in t) (out t)) ;(IOStreams-clear in out) (input-clear) (current-line-clear) (|tokenStackClear!|) (|reduceStackClear|) (if $SPAD (next-lines-clear)) nil) ;; auxiliary functions needed by the parser (defun char-eq (x y) (char= (character x) (character y))) (defun char-ne (x y) (char/= (character x) (character y))) (Defun FLOATEXPID (X &aux S) (if (AND (IDENTP X) (char= (char-upcase (ELT (SETQ S (PNAME X)) 0)) #\E) (> (LENGTH S) 1) (SPADREDUCE AND 0 (COLLECT (STEP I 1 1 (MAXINDEX S)) (DIGITP (ELT S I))))) (READ-FROM-STRING S t nil :start 1) NIL)) (defun |getToken| (x) (if (EQCAR x '|elt|) (third x) x)) (defun |dollarTran| (dom rand) (let ((eltWord (if |$InteractiveMode| '|$elt| '|elt|))) (if (and (not (atom rand)) (cdr rand)) (cons (list eltWord dom (car rand)) (cdr rand)) (list eltWord dom rand))))