\documentclass{article} \usepackage{axiom} \title{\File{src/interp/i-coerfn.boot} Pamphlet} \author{The Axiom Team} \begin{document} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \begin{verbatim} Special coercion routines This is the newly revised set of coercion functions to work with the new library and the new runtime system. coerceByTable is driven off $CoerceTable which is used to match the top-level constructors of the source and object types. The form of $CoerceTable is an alist where the "properties" are the source top-level constructors and the values are triples target-domain coercion-type function where target-domain is the top-level constructor of the target, coercion-type is one of 'total, 'partial or 'indeterm, and function is the name of the function to call to handle the coercion. coercion-type is used by canCoerce and friends: 'total means that a coercion can definitely be performed, 'partial means that one cannot tell whether a coercion can be performed unless you have the actual data (like telling whether a Polynomial Integer can be coerced to an Integer: you have to know whether it is a constant polynomial), and 'indeterm means that you might be able to tell without data, but you need to call the function with the argument "$fromCoerceable$" for a response of true or false. As an example of this last kind, you may be able to coerce a list to a vector but you have to know what the underlying types are. So List Integer is coerceable to Vector Integer but List Float is not necessarily coerceable to Vector Integer. The functions always take three arguments: value this is the unwrapped source object source-type this is the type of the source target-type this is the requested type of the target For ethical reasons and to avoid eternal damnation, we try to use library functions to perform a lot of the structure manipulations. However, we sometimes cheat for efficiency reasons, particularly to avoid intermediate instantiations. the following are older comments: This file contains the special coercion routines that convert from one datatype to another in the interpreter. The choice of the primary special routine is made by the function coerceByTable. Note that not all coercions use these functions, as some are done via SPAD algebra code and controlled by the function coerceByFunction. See the file COERCE BOOT for more information. some assumption about the call of commute and embed functions: embed functions are called for one level embedding only, e.g. I to P I, but not I to P G I commute functions are called for two types which differ only in the permutation of the two top type constructors e.g. G P RN to P G RN, but not G P I to P G RN or P[x] G RN to G P RN all functions in this file should call canCoerce and coerceInt, as opposed to canCoerceFrom and coerceInteractive all these coercion functions have the following result: 1. if u=$fromCoerceable$, then TRUE or NIL 2. if the coercion succeeds, the coerced value (this may be NIL) 3. if the coercion fails, they throw to a catch point in coerceByTable \end{verbatim} \section{License} <<license>>= -- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are -- met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS -- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED -- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A -- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER -- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, -- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, -- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR -- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF -- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING -- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS -- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <<license>> SETANDFILEQ($coerceFailure,GENSYM()) position1(x,y) == -- this is used where we want to assume a 1-based index 1 + position(x,y) --% Direct Product, New and Old DP2DP(u,source is [.,n,S],target is [.,m,T]) == n ^= m => nil u = '_$fromCoerceable_$ => canCoerce(S,T) null (u' := coerceInt(objNewWrap(u,['Vector,S]),['Vector,T])) => coercionFailure() objValUnwrap u' --% Distributed Multivariate Polynomials, New and Old Dmp2Dmp(u,source is [dmp,v1,S], target is [.,v2,T]) == -- the variable lists must share some variables, or u is a constant u = '_$fromCoerceable_$ => v:= intersection(v1,v2) v and w2:= SETDIFFERENCE(v2,v) t1:= if w1 then [dmp,w1,S] else S t2:= if w2 then [dmp,w2,T] else T canCoerce(t1,t2) null u => domainZero(target) u is [[e,:c]] and e=LIST2VEC [0 for v in v1] => z:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(z) coercionFailure() v:= intersection(v1,v2) => w1:= SETDIFFERENCE(v1,v) => coerceDmp1(u,source,target,v,w1) coerceDmp2(u,source,target) coercionFailure() coerceDmp1(u,source is [.,v1,S],target is [.,v2,T],v,w) == -- coerces one Dmp to another, where v1 is not a subset of v2 -- v is the intersection, w the complement of v1 and v2 t:= ['DistributedMultivariatePolynomial,w,S] x:= domainZero(target) one:= domainOne(T) plusfunc:= getFunctionFromDomain('_+,target,[target,target]) multfunc:= getFunctionFromDomain('_*,target,[target,target]) pat1:= [member(x,v) for x in v1] pat2:= [member(x,w) for x in v1] pat3:= [member(x,v) and POSN1(x,v) for x in v2] for [e,:c] in u until not z repeat exp:= LIST2VEC [y for x in pat2 for y in VEC2LIST e | x] z:= coerceInt(objNewWrap([CONS(exp,c)],t),target) => li:= [y for x in pat1 for y in VEC2LIST e | x] a:= [CONS(LIST2VEC [if x then li.x else 0 for x in pat3],one)] x:= SPADCALL(x,SPADCALL(objValUnwrap(z),a,multfunc),plusfunc) z => x coercionFailure() coerceDmp2(u,source is [.,v1,S],target is [.,v2,T]) == -- coerces one Dmp to another, where v1 is included in v2 x:= domainZero(target) one:= domainOne(T) plusfunc:= getFunctionFromDomain('_+,target,[target,target]) multfunc:= getFunctionFromDomain('_*,target,[target,target]) pat:= [member(x,v1) and POSN1(x,v1) for x in v2] for [e,:c] in u until not z repeat z:= coerceInt(objNewWrap(c,S),target) => li:= VEC2LIST e a:= [CONS(LIST2VEC [if x then li.x else 0 for x in pat],one)] x:= SPADCALL(x,SPADCALL(objValUnwrap(z),a,multfunc),plusfunc) NIL z => x coercionFailure() Dmp2Expr(u,source is [dmp,vars,S], target is [Expr,T]) == u = '_$fromCoerceable_$ => canCoerce(S, target) null vars => [[., :c]] := u not (c := coerceInt(objNewWrap(c, S), target)) => coercionFailure() objValUnwrap(c) syms := [objValUnwrap coerceInt(objNewWrap(var, $Symbol), target) for var in vars] sum := domainZero(target) plus := getFunctionFromDomain("+", target, [target, target]) mult := getFunctionFromDomain("*", target, [target, target]) expn := getFunctionFromDomain("**", target, [target, $Integer]) for [e, :c] in u repeat not (c := coerceInt(objNewWrap(c, S), target)) => coercionFailure() c := objValUnwrap(c) term := domainOne(target) for i in 0.. for sym in syms repeat exp := e.i e.i > 0 => term := SPADCALL(term, SPADCALL(sym, e.i, expn), mult) sum := SPADCALL(sum, SPADCALL(c, term, mult), plus) sum Dmp2Mp(u, source is [dmp, x, S], target is [mp, y, T]) == source' := [dmp,y,T] u = '_$fromCoerceable_$ => x = y => canCoerce(S,T) canCoerce(source',target) null u => domainZero(target) -- 0 dmp is = nil x ^= y => (u' := coerceInt(objNewWrap(u,source),source')) or coercionFailure() (u' := coerceInt(u',target)) or coercionFailure() objValUnwrap(u') -- slight optimization for case #u = 1, x=y , #x =1 and S=T -- I know it's pathological, but it may avoid an instantiation (x=y) and (1 = #u) and (1 = #x) and (S = T) => [1,1,[(CAAR u).0,0,:CDAR u]] (u' := coerceDmpCoeffs(u,S,T)) = 'failed => coercionFailure() plusfunc := getFunctionFromDomain("+",target,[target,target]) u'' := genMpFromDmpTerm(u'.0, 0) for i in 1..(#u' - 1) repeat u'' := SPADCALL(u'',genMpFromDmpTerm(u'.i, 0),plusfunc) u'' coerceDmpCoeffs(u,S,T) == -- u is a dmp, S is domain of coeffs, T is domain to coerce coeffs to S = T => u u' := nil bad := nil for [e,:c] in u repeat bad => nil null (c' := coerceInt(objNewWrap(c,S),T)) => return (bad := true) u' := [[e,:objValUnwrap(c')],:u'] bad => 'failed nreverse u' sortAndReorderDmpExponents(u,vl) == vl' := reverse MSORT vl n := (-1) + #vl pos := LIST2VEC LZeros (n+1) for i in 0..n repeat pos.i := position(vl.i,vl') u' := nil for [e,:c] in u repeat e' := LIST2VEC LZeros (n+1) for i in 0..n repeat e'.(pos.i) := e.i u' := [[e',:c],:u'] reverse u' domain2NDmp(u, source, target is [., y, T]) == target' := ['DistributedMultivariatePolynomial,y,T] u = '_$fromCoerceable_$ => canCoerce(source,target') (u' := coerceInt(objNewWrap(u,source),target')) => (u'' := coerceInt(u',target)) => objValUnwrap(u'') coercionFailure() coercionFailure() Dmp2NDmp(u,source is [dmp,x,S],target is [ndmp,y,T]) == -- a null DMP = 0 null u => domainZero(target) target' := [dmp,y,T] u = '_$fromCoerceable_$ => Dmp2Dmp(u,source,target') (u' := Dmp2Dmp(u,source,target')) => addDmpLikeTermsAsTarget(u',target) coercionFailure() addDmpLikeTermsAsTarget(u,target) == u' := domainZero(target) func := getFunctionFromDomain("+",target,[target,target]) for t in u repeat u' := SPADCALL(u',[t],func) u' -- rewrite ? Dmp2P(u, source is [dmp,vl, S], target is [.,T]) == -- a null DMP = 0 null u => domainZero(target) u = '_$fromCoerceable_$ => t := canCoerce(S,T) null t => canCoerce(S,target) t S is ['Polynomial,.] => mp := coerceInt(objNewWrap(u,source),['MultivariatePolynomial,vl,S]) or coercionFailure() p := coerceInt(mp,target) or coercionFailure() objValUnwrap p -- slight optimization for case #u = 1, #vl =1 and S=T -- I know it's pathological, but it may avoid an instantiation (1 = #u) and (1 = #vl) and (S = T) => (lexp:= (CAAR u).0) = 0 => [1,:CDAR u] [1,vl.0,[lexp,0,:CDAR u]] vl' := reverse MSORT vl source' := [dmp,vl',S] target' := ['MultivariatePolynomial,vl',S] u' := sortAndReorderDmpExponents(u,vl) u' := coerceInt(objNewWrap(u',source'),target') if u' then u' := translateMpVars2PVars (objValUnwrap(u'),vl') u' := coerceInt(objNewWrap(u',['Polynomial,S]),target) u' => objValUnwrap(u') -- get drastic. create monomials source' := [dmp,vl,T] u' := domainZero(target) oneT := domainOne(T) plusfunc := getFunctionFromDomain("+",target,[target,target]) multfunc := getFunctionFromDomain("*",target,[target,target]) for [e,:c] in u repeat (c' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() (e' := coerceInt(objNewWrap([[e,:oneT]],source'),target)) or coercionFailure() t := SPADCALL(objValUnwrap(e'),objValUnwrap(c'),multfunc) u' := SPADCALL(u',t,plusfunc) coercionFailure() translateMpVars2PVars (u, vl) == u is [ =1, v, :termlist] => [ 1, vl.(v-1), :[[e,:translateMpVars2PVars(c,vl)] for [e,:c] in termlist]] u Dmp2Up(u, source is [dmp,vl,S],target is [up,var,T]) == null u => -- this is true if u = 0 domainZero(target) u = '_$fromCoerceable_$ => member(var,vl) => vl' := remove(vl,var) null vl' => -- no remaining variables canCoerce(S,T) null rest vl' => -- one remaining variable canCoerce([up,first vl',S],T) canCoerce([dmp,vl',S], T) canCoerce(source,T) -- check constant case (null rest u) and (first(u) is [e,:c]) and ( and/[(0 = e.i) for i in 0..(-1 + #vl)] ) => (x := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(x) -- check non-member case null member(var,vl) => (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure() [[0,:objValUnwrap u']] vl' := remove(vl,var) -- only one variable in DMP case null vl' => u' := nreverse SORTBY('CAR,[[e.0,:c] for [e,:c] in u]) (u' := coerceInt(objNewWrap(u',[up,var,S]),target)) or coercionFailure() objValUnwrap u' S1 := [dmp,vl',S] plusfunc:= getFunctionFromDomain('_+,T,[T,T]) zero := getConstantFromDomain('(Zero),T) x := NIL pos:= POSN1(var,vl) for [e,:c] in u until not y repeat exp:= e.pos e1:= removeVectorElt(e,pos) y:= coerceInt(objNewWrap([[e1,:c]],S1),T) => -- need to be careful about zeros p:= ASSQ(exp,x) => c' := SPADCALL(CDR p,objValUnwrap(y),plusfunc) c' = zero => x := REMALIST(x,exp) RPLACD(p,c') zero = objValUnwrap(y) => 'iterate x := CONS(CONS(exp,objValUnwrap(y)),x) y => nreverse SORTBY('CAR,x) coercionFailure() removeVectorElt(v,pos) == -- removes the pos'th element from vector v LIST2VEC [x for x in VEC2LIST v for y in 0.. | not (y=pos)] removeListElt(l,pos) == pos = 0 => CDR l [CAR l, :removeListElt(CDR l,pos-1)] NDmp2domain(u,source is [ndmp,x,S],target) == -- a null NDMP = 0 null u => domainZero(target) dmp := 'DistributedMultivariatePolynomial source' := [dmp,x,S] u = '_$fromCoerceable_$ => canCoerce(source',target) u' := addDmpLikeTermsAsTarget(u,source') (u'' := coerceInt(objNewWrap(u',source'),target)) => objValUnwrap(u'') coercionFailure() NDmp2NDmp(u,source is [ndmp,x,S],target is [.,y,T]) == -- a null NDMP = 0 null u => domainZero(target) dmp := 'DistributedMultivariatePolynomial source' := [dmp,x,S] target' := [dmp,y,T] u = '_$fromCoerceable_$ => canCoerce(source',target') u' := addDmpLikeTermsAsTarget(u,source') (u'' := coerceInt(objNewWrap(u',source'),target')) => addDmpLikeTermsAsTarget(objValUnwrap(u''),target) coercionFailure() --% Expression Expr2Complex(u,source is [.,S], target is [.,T]) == u = '_$fromCoerceable_$ => nil -- can't tell, in general not member(S, [$Integer, $Float, $DoubleFloat]) => coercionFailure() not member(T, [$Float, $DoubleFloat]) => coercionFailure() complexNumeric := getFunctionFromDomain("complexNumeric", ['Numeric, S], [source]) -- the following might fail cf := SPADCALL(u,complexNumeric) -- returns a Float T = $DoubleFloat => null (z := coerceInt(objNewWrap(cf, ['Complex, $Float]), ['Complex, $DoubleFloat])) => coercionFailure() objValUnwrap z cf Expr2Dmp(u,source is [Expr,S], target is [dmp,v2,T]) == u = '_$fromCoerceable_$ => canCoerce(source, T) null v2 => not (z := coerceInt(objNewWrap(u, source), T)) => coercionFailure() [[LIST2VEC NIL, :objValUnwrap z]] obj := objNewWrap(u, source) univ := coerceInt(obj, ['UnivariatePolynomial, first v2, T]) not univ => T = source => coercionFailure() not (z := coerceInt(obj, [dmp, v2, source])) => coercionFailure() z := objValUnwrap z for term in z repeat [., :c] := term not (c := coerceInt(objNewWrap(c, source), T)) => coercionFailure() RPLACD(term, objValUnwrap c) z univ := objValUnwrap univ -- only one variable null rest v2 => for term in univ repeat RPLACA(term, VECTOR CAR term) univ -- more than one variable summands := nil for [e,:c] in univ repeat summands := Expr2Dmp1(summands, LIST2VEC [e, :[0 for v in rest v2]], c, T, 1, rest v2, T) plus := getFunctionFromDomain("+", target, [target, target]) sum := domainZero target for summand in summands repeat sum := SPADCALL([summand], sum, plus) sum Expr2Dmp1(summands, vec, c, source, index, varList, T) == if null varList then if not (source = T) then not (c := coerceInt(objNewWrap(c, source), T)) => coercionFailure() c := objValUnwrap c summands := [[vec, :c], :summands] else univ := coerceInt(objNewWrap(c, source), ['UnivariatePolynomial, first varList, T]) univ := objValUnwrap univ for [e,:c] in univ repeat vec := COPY_-SEQ vec vec.index := e summands := Expr2Dmp1(summands, vec, c, T, index+1, rest varList, T) summands Expr2Mp(u,source is [Expr,S], target is [.,v2,T]) == u = '_$fromCoerceable_$ => canCoerce(source, T) dmp := ['DistributedMultivariatePolynomial,v2,T] d := Expr2Dmp(u,source, dmp) not (m := coerceInt(objNewWrap(d, dmp), target)) => coercionFailure() objValUnwrap m Expr2Up(u,source is [Expr,S], target is [.,var,T]) == u = '_$fromCoerceable_$ => canCoerce(source, T) kernelFunc := getFunctionFromDomain("kernels", source, [source]) kernelDom := ['Kernel, source] nameFunc := getFunctionFromDomain("name", kernelDom, [kernelDom]) kernels := SPADCALL(u,kernelFunc) v1 := [SPADCALL(kernel, nameFunc) for kernel in kernels] not member(var, v1) => coercionFailure() -- variable is a kernel varKernel := kernels.(POSN1(var, v1)) univFunc := getFunctionFromDomain("univariate", source, [source, kernelDom]) sup := ['SparseUnivariatePolynomial, source] fracUniv := SPADCALL(u, varKernel, univFunc) denom := CDR fracUniv not equalOne(denom, sup) => coercionFailure() numer := CAR fracUniv uniType := ['UnivariatePolynomial, var, source] (z := coerceInt(objNewWrap(numer, uniType), target)) => objValUnwrap z coercionFailure() --% Kernels over Expr Ker2Ker(u,source is [.,S], target is [.,T]) == u = '_$fromCoerceable_$ => canCoerce(S, T) not (m := coerceInt(objNewWrap(u, source), S)) => coercionFailure() u' := objValUnwrap m not (m' := coerceInt(objNewWrap(u', S), T)) => coercionFailure() u'' := objValUnwrap m' not (m'' := coerceInt(objNewWrap(u'', T), target)) => coercionFailure() objValUnwrap m'' Ker2Expr(u,source is [.,S], target) == u = '_$fromCoerceable_$ => canCoerce(S, target) not (m := coerceByFunction(objNewWrap(u, source), S)) => coercionFailure() u':= objValUnwrap m not (m' := coerceInt(objNewWrap(u', S), target)) => coercionFailure() objValUnwrap m' --% Factored objects Factored2Factored(u,oldmode,newmode) == [.,oldargmode,:.]:= oldmode [.,newargmode,:.]:= newmode u = '_$fromCoerceable_$ => canCoerce(oldargmode,newargmode) u' := unwrap u unit' := coerceInt(objNewWrap(first u',oldargmode),newargmode) null unit' => coercionFailure() factors := KDR u' factors' := [(coerceFFE(x,oldargmode,newargmode)) for x in factors] member('failed,factors') => coercionFailure() [objValUnwrap(unit'),:factors'] coerceFFE(ffe, oldmode, newmode) == fac' := coerceInt(objNewWrap(ffe.1,oldmode),newmode) null fac' => 'failed LIST2VEC [ffe.0,objValUnwrap(fac'),ffe.2] --% Complex Complex2underDomain(u,[.,S],target) == u = '_$fromCoerceable_$ => nil [r,:i] := u i=domainZero(S) => [r',.,.]:= coerceInt(objNewWrap(r,S),target) or coercionFailure() r' coercionFailure() Complex2FR(u,S is [.,R],target is [.,T]) == u = '_$fromCoerceable_$ => S ^= T => nil R = $Integer => true nil S ^= T => coercionFailure() package := R = $Integer => ['GaussianFactorizationPackage] coercionFailure() factor := getFunctionFromDomain('factor,package,[S]) SPADCALL(u,factor) Complex2Expr(u, source is [.,S], target is [., T]) == u = '_$fromCoerceable_$ => T is ['Complex, T1] and canCoerceFrom(S, T1) or coercionFailure() E := defaultTargetFE source negOne := coerceInt(objNewWrap(-1, $Integer), E) null negOne => coercionFailure() sqrtFun := getFunctionFromDomain('sqrt, E, [E]) i := SPADCALL(objValUnwrap negOne, sqrtFun) realFun := getFunctionFromDomain('real, source, [source]) imagFun := getFunctionFromDomain('imag, source, [source]) real := SPADCALL(u, realFun) imag := SPADCALL(u, imagFun) realExp := coerceInt(objNewWrap(real, S), E) null realExp => coercionFailure() imagExp := coerceInt(objNewWrap(imag, S), E) null imagExp => coercionFailure() timesFun := getFunctionFromDomain('_*, E, [E, E]) plusFun := getFunctionFromDomain('_+, E, [E, E]) newVal := SPADCALL(objValUnwrap(realExp), SPADCALL(i, objValUnwrap imagExp, timesFun), plusFun) newObj := objNewWrap(newVal, E) finalObj := coerceInt(newObj, target) finalObj => objValUnwrap finalObj coercionFailure() --% Integer I2EI(n,source,target) == n = '_$fromCoerceable_$ => nil if not ODDP(n) then n else coercionFailure() I2OI(n,source,target) == n = '_$fromCoerceable_$ => nil if ODDP(n) then n else coercionFailure() I2PI(n,source,target) == n = '_$fromCoerceable_$ => nil if n > 0 then n else coercionFailure() I2NNI(n,source,target) == n = '_$fromCoerceable_$ => nil if n >= 0 then n else coercionFailure() --% List L2Tuple(val, source is [.,S], target is [.,T]) == val = '_$fromCoerceable_$ => canCoerce(S,T) null (object := coerceInt1(mkObjWrap(val,source), ['List, T])) => coercionFailure() asTupleNew0 objValUnwrap object L2DP(l, source is [.,S], target is [.,n,T]) == -- need to know size of the list l = '_$fromCoerceable_$ => nil n ^= SIZE l => coercionFailure() (v := coerceInt(objNewWrap(LIST2VEC l,['Vector,S]),['Vector,T])) or coercionFailure() V2DP(objValUnwrap v, ['Vector, T], target) V2DP(v, source is [.,S], target is [.,n,T]) == -- need to know size of the vector v = '_$fromCoerceable_$ => nil n ^= SIZE v => coercionFailure() (v1 := coerceInt(objNewWrap(v,source),['Vector,T])) or coercionFailure() dpFun := getFunctionFromDomain('directProduct, target, [['Vector,T]]) SPADCALL(objValUnwrap v1, dpFun) L2V(l, source is [.,S], target is [.,T]) == l = '_$fromCoerceable_$ => canCoerce(S,T) (v := coerceInt(objNewWrap(LIST2VEC l,['Vector,S]),target)) or coercionFailure() objValUnwrap(v) V2L(v, source is [.,S], target is [.,T]) == v = '_$fromCoerceable_$ => canCoerce(S,T) (l := coerceInt(objNewWrap(VEC2LIST v,['List,S]),target)) or coercionFailure() objValUnwrap(l) L2M(u,[.,D],[.,R]) == u = '_$fromCoerceable_$ => nil D is ['List,E] and isRectangularList(u,#u,# first u) => u' := nil for x in u repeat x' := nil for y in x repeat (y' := coerceInt(objNewWrap(y,E),R)) or coercionFailure() x' := [objValUnwrap(y'),:x'] u' := [LIST2VEC reverse x',:u'] LIST2VEC reverse u' coercionFailure() L2Record(l,[.,D],[.,:al]) == l = '_$fromCoerceable_$ => nil #l = #al => v:= [u for x in l for [":",.,D'] in al] where u == T:= coerceInt(objNewWrap(x,D),D') or return 'failed objValUnwrap(T) v = 'failed => coercionFailure() #v = 2 => [v.0,:v.1] LIST2VEC v coercionFailure() L2Rm(u,source is [.,D],target is [.,n,m,R]) == u = '_$fromCoerceable_$ => nil D is ['List,E] and isRectangularList(u,n,m) => L2M(u,source,['Matrix,R]) coercionFailure() L2Sm(u,source is [.,D],[.,n,R]) == u = '_$fromCoerceable_$ => nil D is ['List,E] and isRectangularList(u,n,n) => L2M(u,source,['Matrix,R]) coercionFailure() L2Set(x,source is [.,S],target is [.,T]) == x = '_$fromCoerceable_$ => canCoerce(S,T) -- call library function brace to get a set target' := ['Set,S] u := objNewWrap( SPADCALL(x,getFunctionFromDomain('brace,target',[source])), target') (u := coerceInt(u,target)) or coercionFailure() objValUnwrap u Set2L(x,source is [.,S],target is [.,T]) == x = '_$fromCoerceable_$ => canCoerce(S,T) -- call library function destruct to get a list u := objNewWrap( SPADCALL(x,getFunctionFromDomain('destruct,source,[source])), ['List,S]) (u := coerceInt(u,target)) or coercionFailure() objValUnwrap u Agg2Agg(x,source is [agg1,S],target is [.,T]) == x = '_$fromCoerceable_$ => canCoerce(S,T) S = T => coercionFailure() -- library function target' := [agg1,T] (u := coerceInt(objNewWrap(x,source),target')) or coercionFailure() (u := coerceInt(u,target)) or coercionFailure() objValUnwrap u Agg2L2Agg(x,source is [.,S],target) == -- tries to use list as an intermediate type mid := ['List,S] x = '_$fromCoerceable_$ => canCoerce(source,mid) and canCoerce(mid,target) (u := coerceInt(objNewWrap(x,source),mid)) or coercionFailure() (u := coerceInt(u,target)) or coercionFailure() objValUnwrap u isRectangularList(x,p,q) == p=0 or p=#x => n:= #first x and/[n=#y for y in rest x] => p=0 or q=n --% Matrix M2L(x,[.,S],target) == mid := ['Vector,['Vector,S]] x = '_$fromCoerceable_$ => canCoerce(mid,target) (u := coerceInt(objNewWrap(x,mid),target)) or coercionFailure() objValUnwrap u M2M(x,[.,R],[.,S]) == x = '_$fromCoerceable_$ => canCoerce(R,S) n := # x m := # x.0 v := nil for i in 0..(n-1) repeat u := nil for j in 0..(m-1) repeat y := x.i.j (y' := coerceInt(objNewWrap(y,R),S)) or coercionFailure() u := [objValUnwrap y',:u] v := [LIST2VEC reverse u,:v] LIST2VEC reverse v M2Rm(x,source is [.,R],[.,p,q,S]) == x = '_$fromCoerceable_$ => nil n:= #x m:= #x.0 n=p and m=q => M2M(x,source,[nil,S]) coercionFailure() M2Sm(x,source is [.,R],[.,p,S]) == x = '_$fromCoerceable_$ => nil n:= #x m:= #x.(0) n=m and m=p => M2M(x,source,[nil,S]) coercionFailure() M2V(x,[.,S],target) == mid := ['Vector,['Vector,S]] x = '_$fromCoerceable_$ => canCoerce(mid,target) (u := coerceInt(objNewWrap(x,mid),target)) or coercionFailure() objValUnwrap u --% Multivariate Polynomial Mp2Dmp(u, source is [., x, S], target is [dmp, y, T]) == -- Change the representation to a DMP with the same variables and -- coerce. target' := [dmp,x,S] u = '_$fromCoerceable_$ => canCoerce(target',target) -- check if we have a constant u is [ =0,:c] => null (u' := coerceInt(objNewWrap(c,S),target)) => coercionFailure() objValUnwrap(u') plus := getFunctionFromDomain('_+,target',[target',target']) mult := getFunctionFromDomain('_*,target',[target',target']) one := domainOne(S) zero := domainZero(S) (u' := coerceInt(objNewWrap(Mp2SimilarDmp(u,S,#x,plus,mult,one,zero), target'),target)) or coercionFailure() objValUnwrap(u') Mp2SimilarDmp(u,S,n,plus,mult,one,zero) == u is [ =0,:c] => c = zero => NIL -- zero for dmp [[LIST2VEC LZeros n,:c]] u is [ =1,x,:terms] => u' := NIL -- zero for dmp for [e,:c] in terms repeat e' := LIST2VEC LZeros n e'.(x-1) := e t := [[e',:one]] t := SPADCALL(t,Mp2SimilarDmp(c,S,n,plus,mult,one,zero),mult) u' := SPADCALL(u',t,plus) u' Mp2Expr(u,source is [mp,vars,S], target is [Expr,T]) == u = '_$fromCoerceable_$ => canCoerce(S, target) dmp := ['DistributedMultivariatePolynomial, vars, S] not (d := coerceInt(objNewWrap(u, source), dmp)) => coercionFailure() Dmp2Expr(objValUnwrap d, dmp, target) Mp2FR(u,S is [.,vl,R],[.,T]) == u = '_$fromCoerceable_$ => S ^= T => nil R in '((Integer) (Fraction (Integer))) => true nil S ^= T => coercionFailure() package := R = $Integer => ovl := ['OrderedVariableList, vl] ['MultivariateFactorize,ovl, ['IndexedExponents, ovl],R,S] R is ['Fraction, D] => ovl := ['OrderedVariableList, vl] package := ['MRationalFactorize,['IndexedExponents, ovl], ovl, D, S] coercionFailure() factor := getFunctionFromDomain('factor,package,[S]) SPADCALL(u,factor) Mp2Mp(u,source is [mp,x,S], target is [.,y,T]) == -- need not deal with case of x = y (coerceByMapping) common := intersection(y,x) x' := SETDIFFERENCE(x,common) y' := SETDIFFERENCE(y,common) u = '_$fromCoerceable_$ => x = y => canCoerce(S,T) null common => canCoerce(source,T) null x' => canCoerce(S,target) null y' => canCoerce([mp,x',S],T) canCoerce([mp,x',S],[mp,y',T]) -- first check for constant case u is [ =0,:c] => (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') plus := getFunctionFromDomain('_+,target,[target,target]) -- now no-common-variables case null common => times := getFunctionFromDomain('_*,target,[target,target]) expn := getFunctionFromDomain('_*_*,target, [target,$NonNegativeInteger]) Mp2MpAux0(u,S,target,x,plus,times,expn) -- if source vars are all in target null x' => monom := getFunctionFromDomain('monomial,target, [target,['OrderedVariableList,y],$NonNegativeInteger]) Mp2MpAux1(u,S,target,x,y,plus,monom) -- if target vars are all in source null y' => -- change source to MP[common] MP[x'] S univariate := getFunctionFromDomain('univariate, source,[source,['OrderedVariableList,x]]) u' := Mp2MpAux2(u,x,common,x',common,x',univariate,S,NIL) (u' := coerceInt(objNewWrap(u', [mp,common,[mp,x',S]]),target)) or coercionFailure() objValUnwrap(u') -- we have a mixture (u' := coerceInt(objNewWrap(u,source),[mp,common,[mp,x',S]])) or coercionFailure() (u' := coerceInt(u',target)) or coercionFailure() objValUnwrap(u') Mp2MpAux0(u,S,target,vars,plus,times,expn) == -- for case when no common variables u is [ =0,:c] => (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') [.,var,:terms] := u [mp,.,T] := target x := coerceInt(objNewWrap(vars.(var-1),['Variable,vars.(var-1)]), [mp,vars,$Integer]) or coercionFailure() (x := coerceInt(x,T)) or coercionFailure() x := [0,:objValUnwrap x] sum := domainZero(target) for [e,:c] in terms repeat prod := SPADCALL(SPADCALL(x,e,expn), Mp2MpAux0(c,S,target,vars,plus,times,expn),times) sum := SPADCALL(sum,prod,plus) sum Mp2MpAux1(u,S,target,varl1,varl2,plus,monom) == -- for case when source vars are all in target u is [ =0,:c] => (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') [.,var,:terms] := u sum := domainZero(target) for [e,:c] in terms repeat mon := SPADCALL( Mp2MpAux1(c,S,target,varl1,varl2,plus,monom), position1(varl1.(var-1), varl2),e,monom) sum := SPADCALL(sum,mon,plus) sum Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,isUnder) == -- target vars are all in source mp2 := ['MultivariatePolynomial,oldcomm,['MultivariatePolynomial, oldrest,S]] common => u is [ =0,:c] => (u' := coerceInt(objNewWrap(c,S),mp2)) or coercionFailure() objValUnwrap(u') [var,:common] := common u' := SPADCALL(u,position1(var,x),univariate) null(rest(u')) and (first(first(u')) = 0) => Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,isUnder) [1,position1(var,oldcomm),:[[e,:Mp2MpAux2(c,x,oldcomm,oldrest, common,restvars,univariate,S,isUnder)] for [e,:c] in u']] null isUnder => [0,:Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,true)] -- just treat like elt of [mp,x',S] u is [ =0,:c] => u [var,:restvars] := restvars u' := SPADCALL(u,position1(var,x),univariate) null(rest(u')) and (first(first(u')) = 0) => Mp2MpAux2(u,x,oldcomm,oldrest,common,restvars,univariate,S,isUnder) [1,position1(var,oldrest),:[[e,:Mp2MpAux2(c,x,oldcomm,oldrest, common,restvars,univariate,S,isUnder)] for [e,:c] in u']] genMpFromDmpTerm(u, oldlen) == -- given one term of a DMP representation of a polynomial, this creates -- the corresponding MP term. patlen := oldlen [e,:c] := u numexps := # e patlen >= numexps => [0, :c] for i in patlen..(numexps - 1) repeat e.i = 0 => patlen := patlen + 1 return nil patlen >= numexps => [0, :c] [1, 1+patlen, [e.patlen,:genMpFromDmpTerm(u,patlen+1)]] Mp2P(u, source is [mp,vl, S], target is [p,R]) == u = '_$fromCoerceable_$ => canCoerce(S,target) S is ['Polynomial,.] => MpP2P(u,vl,S,R) vl' := REVERSE MSORT vl -- if Mp2Mp fails, a THROW will occur u' := Mp2Mp(u,source,[mp,vl',S]) u' := translateMpVars2PVars (u',vl') (u' := coerceInt(objNewWrap(u',[p,S]),target)) or coercionFailure() objValUnwrap(u') MpP2P(u,vl,PS,R) == -- u has type MP(vl,PS). Want to coerce to P R. PR := ['Polynomial,R] u is [ =0,:c] => (u' :=coerceInt(objNewWrap(c,PS),PR)) or coercionFailure() objValUnwrap u' [ .,pos,:ec] := u multivariate := getFunctionFromDomain('multivariate, PR,[['SparseUnivariatePolynomial,PR],$Symbol]) sup := [[e,:MpP2P(c,vl,PS,R)] for [e,:c] in ec] p := SPADCALL(sup,vl.(pos-1),multivariate) --(p' :=coerceInt(objNewWrap(p,PS),['Polynomial,R])) or coercionFailure() --objValUnwrap(p') Mp2Up(u,source is [mp,vl,S],target is [up,x,T]) == u = '_$fromCoerceable_$ => member(x,vl) => vl = [x] => canCoerce(S,T) canCoerce([mp,delete(x,vl),S],T) canCoerce(source,T) u is [ =0,:c] => -- constant polynomial? (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap u' null member(x,vl) => (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure() [[0,:objValUnwrap(u')]] vl = [x] => u' := [[e,:c] for [e,.,:c] in CDDR u] (u' := coerceInt(objNewWrap(u',[up,x,S]),target)) or coercionFailure() objValUnwrap u' -- do a univariate to transform u to a UP(x,P S) and then coerce again var := position1(x,vl) UPP := ['UnivariatePolynomial,x,source] univariate := getFunctionFromDomain('univariate, source,[source,['OrderedVariableList,vl]]) upU := SPADCALL(u,var,univariate) -- we may assume this has type UPP (u' := coerceInt(objNewWrap(upU,UPP),target)) or coercionFailure() objValUnwrap u' --% OrderedVariableList OV2OV(u,source is [.,svl], target is [.,tvl]) == svl = intersection(svl,tvl) => u = '_$fromCoerceable_$ => true position1(svl.(u-1),tvl) u = '_$fromCoerceable_$ => nil coercionFailure() OV2P(u,source is [.,svl], target is [.,T]) == u = '_$fromCoerceable_$ => true v := svl.(unwrap(u)-1) [1,v,[1,0,:domainOne(T)]] OV2poly(u,source is [.,svl], target is [p,vl,T]) == u = '_$fromCoerceable_$ => p = 'UnivariatePolynomial => (# svl = 1) and (p = svl.0) and/[member(v,vl) for v in svl] v := svl.(unwrap(u)-1) val' := [1,:domainOne(T)] p = 'UnivariatePolynomial => v ^= vl => coercionFailure() [[1,:domainOne(T)]] null member(v,vl) => coercionFailure() val' := [[1,:domainOne(T)]] source' := ['UnivariatePolynomial,v,T] (u' := coerceInt(objNewWrap(val',source'),target)) or coercionFailure() objValUnwrap(u') OV2SE(u,source is [.,svl], target) == u = '_$fromCoerceable_$ => true svl.(unwrap(u)-1) OV2Sy(u,source is [.,svl], target) == u = '_$fromCoerceable_$ => true svl.(unwrap(u)-1) --% Polynomial varsInPoly(u) == u is [ =1, v, :termlist] => [v,:varsInPoly(c) for [e,:c] in termlist] nil P2FR(u,S is [.,R],[.,T]) == u = '_$fromCoerceable_$ => S ^= T => nil R in '((Integer) (Fraction (Integer))) => true nil S ^= T => coercionFailure() package := R = $Integer => ['MultivariateFactorize,$Symbol,['IndexedExponents, $Symbol],R,S] R is ['Fraction, D] => package := ['MRationalFactorize,['IndexedExponents, $Symbol],$Symbol, D, S] coercionFailure() factor := getFunctionFromDomain('factor,package,[S]) SPADCALL(u,factor) P2Dmp(u, source is [., S], target is [., y, T]) == u = '_$fromCoerceable_$ => -- might be able to say yes canCoerce(source,T) u is [ =0,:c] => -- polynomial is a constant (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') univariate := getFunctionFromDomain('univariate, source,[source,$Symbol]) plus := getFunctionFromDomain("+",target,[target,target]) monom := getFunctionFromDomain('monomial,target, [target,['OrderedVariableList,y],$NonNegativeInteger]) P2DmpAux(u,source,S,target,copy y,y,T,univariate,plus,monom) P2Expr(u, source is [.,S], target is [., T]) == u = '_$fromCoerceable_$ => canCoerce(S, T) S = T => coercionFailure() newS := ['Polynomial, T] val := coerceInt(objNewWrap(u, source), newS) null val => coercionFailure() val := coerceInt(val, target) null val => coercionFailure() objValUnwrap val P2DmpAux(u,source,S,target,varlist,vars,T,univariate,plus,monom) == u is [ =0,:c] => -- polynomial is a constant (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') -- if no variables left, try to go to underdomain of target (T) null vars => (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure() -- if successful, embed (u' := coerceByFunction(u',target)) or coercionFailure() objValUnwrap(u') -- there are variables, so get them out of u [x,:vars] := vars sup := SPADCALL(u,x,univariate) -- this is a SUP P S null sup => -- zero? unlikely. domainZero(target) -- degree 0 polynomial? (variable did not occur) null(rest(sup)) and first(sup) is [ =0,:c] => -- call again, but with one less var P2DmpAux(c,source,S,target,varlist,vars,T,univariate,plus,monom) var := position1(x,varlist) u' := domainZero(target) for [e,:c] in sup repeat u'' := SPADCALL( P2DmpAux(c,source,S,target,varlist,vars,T,univariate,plus,monom), var,e,monom) u' := SPADCALL(u',u'',plus) u' P2Mp(u, source is [., S], target is [., y, T]) == u = '_$fromCoerceable_$ => -- might be able to say yes canCoerce(source,T) univariate := getFunctionFromDomain('univariate, source,[source,$Symbol]) P2MpAux(u,source,S,target,copy y,y,T,univariate) P2MpAux(u,source,S,target,varlist,vars,T,univariate) == u is [ =0,:c] => -- polynomial is a constant (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') -- if no variables left, try to go to underdomain of target (T) null vars => (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure() -- if successful, embed [ 0,:objValUnwrap(u')] -- there are variables, so get them out of u [x,:vars] := vars sup := SPADCALL(u,x,univariate) -- this is a SUP P S null sup => -- zero? unlikely. domainZero(target) -- degree 0 polynomial? (variable did not occur) null(rest(sup)) and first(sup) is [ =0,:c] => -- call again, but with one less var P2MpAux(c,source,S,target,varlist,vars,T,univariate) terms := [[e,:P2MpAux(c,source,S,target,varlist,vars,T,univariate)] for [e,:c] in sup] [1, position1(x,varlist), :terms] varIsOnlyVarInPoly(u, var) == u is [ =1, v, :termlist] => v ^= var => nil and/[varIsOnlyVarInPoly(c,var) for [e,:c] in termlist] true P2Up(u,source is [.,S],target is [.,x,T]) == u = '_$fromCoerceable_$ => canCoerce(source,T) u is [ =0,:c] => (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') -- see if the target var is the polynomial vars varsFun := getFunctionFromDomain('variables,source,[source]) vars := SPADCALL(u,varsFun) not member(x,vars) => (u' := coerceInt(objNewWrap(u,source),T)) or coercionFailure() [[0,:objValUnwrap(u')]] -- do a univariate to transform u to a UP(x,P S) and then coerce again UPP := ['UnivariatePolynomial,x,source] univariate := getFunctionFromDomain('univariate, source,[source,$Symbol]) upU := SPADCALL(u,x,univariate) -- we may assume this has type UPP (u' := coerceInt(objNewWrap(upU,UPP),target)) or coercionFailure() objValUnwrap(u') --% Fraction Qf2PF(u,source is [.,D],target) == u = '_$fromCoerceable_$ => canCoerce(D,target) [num,:den] := u num':= coerceInt(objNewWrap(num,D),target) or coercionFailure() num' := objValUnwrap num' den':= coerceInt(objNewWrap(den,D),target) or coercionFailure() den' := objValUnwrap den' equalZero(den', target) => throwKeyedMsg("S2IA0001",NIL) SPADCALL(num',den', getFunctionFromDomain("/",target,[target,target])) Qf2F(u,source is [.,D,:.],target) == D = $Integer => u = '_$fromCoerceable_$ => true Rn2F(u,source,target) u = '_$fromCoerceable_$ => canCoerce(D,target) [num,:den] := u [.,:num']:= coerceInt(objNewWrap(num,D),target) or coercionFailure() [.,:den']:= coerceInt(objNewWrap(den,D),target) or coercionFailure() (unwrap num') * 1.0 / (unwrap den') Rn2F(rnum, source, target) == float(CAR(rnum)/CDR(rnum)) -- next function is needed in RN algebra code --Rn2F([a,:b],source,target) == -- al:=if LINTP a then QLENGTHCODE a else 4 -- bl:=if LINTP b then QLENGTHCODE b else 4 -- MAX(al,bl) < 36 => FLOAT a / FLOAT b -- sl:=0 -- if al>32 then -- sl:=35*(al-32)/4 -- a:=a/2**sl -- if bl>32 then -- sbl:=35*(bl-32)/4 -- b:=b/2**sbl -- sl:=sl-sbl -- ans:=FLOAT a /FLOAT b -- sl=0 => ans -- ans*2**sl Qf2domain(u,source is [.,D],target) == -- tests whether it is an element of the underlying domain useUnder := (ut := underDomainOf target) and canCoerce(source,ut) u = '_$fromCoerceable_$ => useUnder not (containsPolynomial(D) and containsPolynomial(target)) and useUnder => coercionFailure() -- let other mechanism handle it [num, :den] := u (num' := coerceInt(objNewWrap(num,D),target)) or coercionFailure() num' := objValUnwrap(num') equalOne(den,D) => num' (target is [.,[=$QuotientField,T]]) or (target is [.,.,[=$QuotientField,T]]) => (den' := coerceInt(objNewWrap(den,D),T)) or coercionFailure() den' := [domainOne(T),:objValUnwrap(den')] timesfunc:= getFunctionFromDomain('_*,target, [[$QuotientField,T],target]) SPADCALL(den',num',timesfunc) coercionFailure() Qf2EF(u,[.,S],target) == u = '_$fromCoerceable_$ => canCoerce(S,target) [num,:den] := u (num' := coerceInt(objNewWrap(num,S),target)) or coercionFailure() (den' := coerceInt(objNewWrap(den,S),target)) or coercionFailure() divfun := getFunctionFromDomain("/",target,[target,target]) SPADCALL(objValUnwrap(num'),objValUnwrap(den'),divfun) Qf2Qf(u0,[.,S],target is [.,T]) == u0 = '_$fromCoerceable_$ => S = ['Polynomial, [$QuotientField, $Integer]] and T = '(Polynomial (Integer)) => true canCoerce(S,T) [a,:b] := u0 S = ['Polynomial, [$QuotientField, $Integer]] and T = '(Polynomial (Integer)) => (a' := coerceInt(objNewWrap(a,S),target)) => (b' := coerceInt(objNewWrap(b,S),target)) => divfunc:= getFunctionFromDomain('_/,target,[target,target]) SPADCALL(objValUnwrap(a'),objValUnwrap(b'),divfunc) coercionFailure() coercionFailure() (a' := coerceInt(objNewWrap(a,S),T)) => (b' := coerceInt(objNewWrap(b,S),T)) => [objValUnwrap(a'),:objValUnwrap(b')] coercionFailure() coercionFailure() -- partOf(x,i) == -- VECP x => x.i -- i=0 => first x -- i=1 => rest x -- systemError '"partOf" --% RectangularMatrix Rm2L(x,[.,.,.,R],target) == M2L(x,['Matrix,R],target) Rm2M(x,[.,.,.,R],target is [.,S]) == M2M(x,[nil,R],target) Rm2Sm(x,[.,n,m,S],[.,p,R]) == x = '_$fromCoerceable_$ => n=m and m=p and canCoerce(S,R) n=m and m=p => M2M(x,[nil,S],[nil,R]) coercionFailure() Rm2V(x,[.,.,.,R],target) == M2V(x,['Matrix,R],target) --% Script Scr2Scr(u, source is [.,S], target is [.,T]) == u = '_$fromCoerceable_$ => canCoerce(S,T) null (v := coerceInt(objNewWrap(CDR u,S),T)) => coercionFailure() [CAR u, :objValUnwrap(v)] --% SparseUnivariatePolynomialnimial SUP2Up(u,source is [.,S],target is [.,x,T]) == u = '_$fromCoerceable_$ => canCoerce(source,T) or canCoerce(S,T) null u => u S = T => u -- try to go underneath first null (u' := coerceInt(objNewWrap(u,source),T)) => -- must be careful in case any of the coeffs come back 0 u' := NIL zero := getConstantFromDomain('(Zero),T) for [e,:c] in u repeat c' := objValUnwrap (coerceInt(objNewWrap(c,S),T) or coercionFailure()) c' = zero => 'iterate u' := [[e,:c'],:u'] nreverse u' [[0,:objValUnwrap u']] --% SquareMatrix Sm2L(x,[.,.,R],target) == M2L(x,['Matrix,R],target) Sm2M(x,[.,n,R],target is [.,S]) == M2M(x,[nil,R],target) Sm2PolyType(u,source is [sm,n,S], target is [pol,vl,T]) == -- only really handles cases like: -- SM[2] P I -> P[x,y] SM[2] P I -- works for UP, MP, DMP and NDMP u = '_$fromCoerceable_$ => canCoerce(source,T) -- first want to check case S is Polynomial S is ['Polynomial,S'] => -- check to see if variable occurs in any of the terms if ATOM vl then vl' := [vl] else vl' := vl novars := true for i in 0..(n-1) while novars repeat for j in 0..(n-1) while novars repeat varsUsed := varsInPoly u.i.j or/[member(x,varsUsed) for x in vl'] => novars := nil novars => coercionFailure() source' := [sm,n,[pol,vl,S]] null (u' := coerceInt(objNewWrap(u,source),source')) => coercionFailure() null (u' := coerceInt(u',target)) => coercionFailure() objValUnwrap(u') -- let other cases be handled by standard machinery coercionFailure() Sm2Rm(x,[.,n,R],[.,p,q,S]) == x = '_$fromCoerceable_$ => p=q and p=n and canCoerce(R,S) p=q and p=n => M2M(x,[nil,R],[nil,S]) coercionFailure() Sm2V(x,[.,.,R],target) == M2V(x,['Matrix,R],target) --% Symbol Sy2OV(u,source,target is [.,vl]) == u = '_$fromCoerceable_$ => nil position1(u,vl) Sy2Dmp(u,source,target is [dmp,vl,S]) == u = '_$fromCoerceable_$ => canCoerce(source,S) len:= #vl -1^=(n:= position(u,vl)) => u:= wrap LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],:1] objValUnwrap(coerceInt(objNew(u,[dmp,vl,$Integer]),target)) (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[Zeros len,:objValUnwrap u]] Sy2Mp(u,source,target is [mp,vl,S]) == u = '_$fromCoerceable_$ => canCoerce(source,S) (n:= position1(u,vl)) ^= 0 => [1,n,[1,0,:domainOne(S)]] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [0,:objValUnwrap(u)] Sy2NDmp(u,source,target is [ndmp,vl,S]) == u = '_$fromCoerceable_$ => canCoerce(source,S) len:= #vl -1^=(n:= position(u,vl)) => u:= wrap LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1],:1] objValUnwrap(coerceInt(objNew(u,[ndmp,vl,$Integer]),target)) (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[Zeros len,:objValUnwrap(u)]] Sy2P(u,source,target is [poly,S]) == u = '_$fromCoerceable_$ => true -- first try to get it into an underdomain if (S ^= $Integer) then u' := coerceInt(objNewWrap(u,source),S) if u' then return [0,:objValUnwrap(u')] -- if that failed, return it as a polynomial variable [1,u,[1,0,:domainOne(S)]] Sy2Up(u,source,target is [up,x,S]) == u = '_$fromCoerceable_$ => canCoerce(source,S) u=x => [[1,:domainOne(S)]] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[0,:objValUnwrap u]] Sy2Var(u,source,target is [.,x]) == u = '_$fromCoerceable_$ => NIL u=x => u coercionFailure() --% Univariate Polynomial Up2Dmp(u,source is ['UnivariatePolynomial,var,S], target is ['DistributedMultivariatePolynomial,vl,T]) == -- var must be a member of vl, or u is a constant u = '_$fromCoerceable_$ => member(var,vl) and canCoerce(S,target) null u => domainZero(target) u is [[e,:c]] and e=0 => z:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(z) coercionFailure() member(var,vl) => x:= domainZero(target) one:= domainOne(T) plusfunc:= getFunctionFromDomain('_+,target,[target,target]) multfunc:= getFunctionFromDomain('_*,target,[target,target]) n:= #vl ; p:= POSN1(var,vl) l1:= not (p=0) and [0 for m in 1..p] l2:= not (p=n-1) and [0 for m in p..n-2] for [e,:c] in u until not z repeat z:= coerceInt(objNewWrap(c,S),target) => y:= SPADCALL(objValUnwrap(z), [[LIST2VEC [:l1,e,:l2],:one]],multfunc) x:= SPADCALL(x,y,plusfunc) z => x coercionFailure() coercionFailure() Up2Expr(u,source is [up,var,S], target is [Expr,T]) == u = '_$fromCoerceable_$ => canCoerce(S, target) null u => domainZero(target) u is [[e,:c]] and e=0 => (z := coerceInt(objNewWrap(c, S), target)) => objValUnwrap(z) coercionFailure() sym := objValUnwrap coerceInt(objNewWrap(var, $Symbol), target) plus := getFunctionFromDomain("+", target, [target, target]) mult := getFunctionFromDomain("*", target, [target, target]) expn := getFunctionFromDomain("**", target, [target, $Integer]) -- coerce via Horner's rule [e1, :c1] := first u if not (S = target) then not (c1 := coerceInt(objNewWrap(c1, S), target)) => coercionFailure() c1 := objValUnwrap(c1) for [e2, :c2] in rest u repeat coef := e1 - e2 = 1 => sym SPADCALL(sym, e1-e2, expn) if not (S = target) then not (c2 := coerceInt(objNewWrap(c2, S), target)) => coercionFailure() c2 := objValUnwrap(c2) coef := SPADCALL(SPADCALL(c1, coef, mult), c2, plus) e1 := e2 c1 := coef e1 = 0 => c1 e1 = 1 => SPADCALL(sym, c1, mult) SPADCALL(SPADCALL(sym, e1, expn), c1, mult) Up2FR(u,S is [.,x,R],target is [.,T]) == u = '_$fromCoerceable_$ => S ^= T => nil R in '((Integer) (Fraction (Integer))) => true nil S ^= T => coercionFailure() package := R = $Integer => ['UnivariateFactorize,S] R = $RationalNumber => package := ['RationalFactorize,S] coercionFailure() factor := getFunctionFromDomain('factor,package,[S]) SPADCALL(u,factor) Up2Mp(u,source is [.,x,S], target is [.,vl,T]) == u = '_$fromCoerceable_$ => member(x,vl) => canCoerce(S,T) canCoerce(source,T) null u => domainZero(target) null(rest(u)) and (first(u) is [e,:c]) and e=0 => x:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(x) coercionFailure() null member(x,vl) => (x := coerceInt(objNewWrap(u,source),T)) or coercionFailure() [0,:objValUnwrap(x)] plus := getFunctionFromDomain('_+,target,[target,target]) monom := getFunctionFromDomain('monomial,target, [target,['OrderedVariableList,vl],$NonNegativeInteger]) sum := domainZero(target) pos := position1(x,vl) for [e,:c] in u repeat (p := coerceInt(objNewWrap(c,S),target)) or coercionFailure() mon := SPADCALL(objValUnwrap(p),pos,e,monom) sum := SPADCALL(sum,mon,plus) sum Up2P(u,source is [.,var,S],target is [.,T]) == u = '_$fromCoerceable_$ => canCoerce(S,target) null u => domainZero(target) u is [[e,:c]] and e=0 => x:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(x) coercionFailure() pol:= domainZero(target) one:= domainOne(T) plusfunc := getFunctionFromDomain("+",target,[target,target]) multfunc := getFunctionFromDomain("*",target,[target,target]) for [e,:c] in u until not x repeat x:= coerceInt(objNewWrap(c,S),target) => term:= SPADCALL([1,var,[e,0,:one]],objValUnwrap(x),multfunc) pol:= SPADCALL(pol,term,plusfunc) coercionFailure() x => pol coercionFailure() Up2SUP(u,source is [.,x,S],target is [.,T]) == u = '_$fromCoerceable_$ => canCoerce(source,T) or canCoerce(S,T) null u => u S = T => u -- try to go underneath first null (u' := coerceInt(objNewWrap(u,source),T)) => u' := NIL zero := getConstantFromDomain('(Zero),T) for [e,:c] in u repeat c' := objValUnwrap (coerceInt(objNewWrap(c,S),T) or coercionFailure()) c' = zero => 'iterate u' := [[e,:c'],:u'] nreverse u' [[0,:objValUnwrap u']] Up2Up(u,source is [.,v1,S], target is [.,v2,T]) == -- if v1 = v2 then this is handled by coerceIntByMap -- this only handles case where poly is a constant u = '_$fromCoerceable_$ => v1=v2 => canCoerce(S,T) canCoerce(source,T) null u => u u is [[e,:c]] and e=0 => x:= coerceInt(objNewWrap(c,S),target) => objValUnwrap(x) coercionFailure() coercionFailure() insertAlist(a,b,l) == null l => [[a,:b]] a = l.0.0 => (RPLAC(CDAR l,b);l) _?ORDER(l.0.0,a) => [[a,:b],:l] (fn(a,b,l);l) where fn(a,b,l) == null rest l => RPLAC(rest l,[[a,:b]]) a = l.1.0 => RPLAC(rest l.1,b) _?ORDER(l.1.0,a) => RPLAC(rest l,[[a,:b],:rest l]) fn(a,b,rest l) --% Union Un2E(x,source,target) == ['Union,:branches] := source x = '_$fromCoerceable_$ => and/[canCoerce(t, target) for t in branches | ^ STRINGP t] coerceUn2E(x,source) --% Variable Var2OV(u,source,target is [.,vl]) == sym := CADR source u = '_$fromCoerceable_$ => member(sym,vl) member(sym,vl) => position1(sym,vl) coercionFailure() Var2Dmp(u,source,target is [dmp,vl,S]) == sym := CADR source u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S) len := #vl -1 ^= (n:= position(sym,vl)) => LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1], :getConstantFromDomain('(One),S)] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[Zeros len,:objValUnwrap u]] Var2Gdmp(u,source,target is [dmp,vl,S]) == sym := CADR source u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S) len := #vl -1 ^= (n:= position(sym,vl)) => LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1], :getConstantFromDomain('(One),S)] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[Zeros len,:objValUnwrap u]] Var2Mp(u,source,target is [mp,vl,S]) == sym := CADR source u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S) (n:= position1(u,vl)) ^= 0 => [1,n,[1,0,:getConstantFromDomain('(One),S)]] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [0,:objValUnwrap u] Var2NDmp(u,source,target is [ndmp,vl,S]) == sym := CADR source u = '_$fromCoerceable_$ => member(sym,vl) or canCoerce(source,S) len:= #vl -1^=(n:= position(u,vl)) => LIST [LIST2VEC [(n=i => 1; 0) for i in 0..len-1], :getConstantFromDomain('(One),S)] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[Zeros len,:objValUnwrap(u)]] Var2P(u,source,target is [poly,S]) == sym := CADR source u = '_$fromCoerceable_$ => true -- first try to get it into an underdomain if (S ^= $Integer) then u' := coerceInt(objNewWrap(u,source),S) if u' then return [0,:objValUnwrap(u')] -- if that failed, return it as a polynomial variable [1,sym,[1,0,:getConstantFromDomain('(One),S)]] Var2QF(u,source,target is [qf,S]) == u = '_$fromCoerceable_$ => canCoerce(source,S) S = $Integer => coercionFailure() sym := CADR source (u' := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [objValUnwrap u',:getConstantFromDomain('(One),S)] Var2FS(u,source,target is [fs,S]) == u = '_$fromCoerceable_$ => true (v := coerceInt(objNewWrap(u,source),['Polynomial,S])) or coercionFailure() (v := coerceInt(v,target)) or coercionFailure() objValUnwrap v Var2Up(u,source,target is [up,x,S]) == sym := CADR source u = '_$fromCoerceable_$ => (sym = x) or canCoerce(source,S) x=sym => [[1,:getConstantFromDomain('(One),S)]] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[0,:objValUnwrap u]] Var2SUP(u,source,target is [sup,S]) == sym := CADR source u = '_$fromCoerceable_$ => (sym = "?") or canCoerce(source,S) sym = "?" => [[1,:getConstantFromDomain('(One),S)]] (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() [[0,:objValUnwrap u]] Var2UpS(u,source,target is [ups,x,S]) == sym := CADR source u = '_$fromCoerceable_$ => (sym = x) or canCoerce(source,S) mid := ['UnivariatePolynomial,x,S] x = sym => u := Var2Up(u,source,mid) (u := coerceInt(objNewWrap(u,mid),target)) or coercionFailure() objValUnwrap u (u := coerceInt(objNewWrap(u,source),S)) or coercionFailure() (u := coerceInt(u,target)) or coercionFailure() objValUnwrap u Var2OtherPS(u,source,target is [.,x,S]) == sym := CADR source mid := ['UnivariatePowerSeries,x,S] u = '_$fromCoerceable_$ => (sym = x) or (canCoerce(source,mid) and canCoerce(mid,target)) u := Var2UpS(u,source,mid) (u := coerceInt(objNewWrap(u,mid),target)) or coercionFailure() objValUnwrap u --% Vector V2M(u,[.,D],[.,R]) == u = '_$fromCoerceable_$ => D is ['Vector,:.] => nil -- don't have data canCoerce(D,R) -- first see if we are coercing a vector of vectors D is ['Vector,E] and isRectangularVector(u,MAXINDEX u,MAXINDEX u.0) => LIST2VEC [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(x.j,E),R)) for j in 0..MAXINDEX(x:=u.i)] for i in 0..MAXINDEX u] -- if not, try making it into a 1 by n matrix coercionFailure() --LIST2VEC [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(u.i,D),R)) -- for i in 0..MAXINDEX(u)]] V2Rm(u,[.,D],[.,n,m,R]) == u = '_$fromCoerceable_$ => nil D is [.,E,:.] and isRectangularVector(u,n-1,m-1) => LIST2VEC [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(x.j,E),R)) for j in 0..MAXINDEX(x:=u.i)] for i in 0..MAXINDEX u] coercionFailure() V2Sm(u,[.,D],[.,n,R]) == u = '_$fromCoerceable_$ => nil D is [.,E,:.] and isRectangularVector(u,n-1,n-1) => LIST2VEC [LIST2VEC [objValUnwrap(coerceInt(objNewWrap(x.j,E),R)) for j in 0..MAXINDEX(x:=u.i)] for i in 0..MAXINDEX u] coercionFailure() isRectangularVector(x,p,q) == MAXINDEX x = p => and/[q=MAXINDEX x.i for i in 0..p] -- Polynomial and Expression to Univariate series types P2Uts(u, source, target) == P2Us(u,source, target, 'taylor) P2Uls(u, source, target) == P2Us(u,source, target, 'laurent) P2Upxs(u, source, target) == P2Us(u,source, target, 'puiseux) P2Us(u, source is [.,S], target is [.,T,var,cen], type) == u = '_$fromCoerceable_$ => -- might be able to say yes canCoerce(S,T) T isnt ['Expression, :.] => coercionFailure() if S ^= '(Float) then S := $Integer obj := objNewWrap(u, source) E := ['Expression, S] newU := coerceInt(obj, E) null newU => coercionFailure() EQtype := ['Equation, E] eqfun := getFunctionFromDomain('_=, EQtype, [E,E]) varE := coerceInt(objNewWrap(var, '(Symbol)), E) null varE => coercionFailure() cenE := coerceInt(objNewWrap(cen, T), E) null cenE => coercionFailure() eq := SPADCALL(objValUnwrap(varE), objValUnwrap(cenE), eqfun) package := ['ExpressionToUnivariatePowerSeries, S, E] func := getFunctionFromDomain(type, package, [E, EQtype]) newObj := SPADCALL(objValUnwrap(newU), eq, func) newType := CAR newObj newVal := CDR newObj newType = target => newVal finalObj := coerceInt(objNewWrap(newVal, newType), target) null finalObj => coercionFailure() objValUnwrap finalObj --% General Coercion Commutation Functions -- general commutation functions are called with 5 values -- u object of type source -- source type of u -- S underdomain of source -- target coercion target type -- T underdomain of T -- Because of checking, can always assume S and T have underdomains. --% Complex commuteComplex(u,source,S,target,T) == u = '_$fromCoerceable_$ => canCoerce(S,target) and canCoerce(T,target) [real,:imag] := u (real := coerceInt(objNewWrap(real,S),target)) or coercionFailure() (imag := coerceInt(objNewWrap(imag,S),target)) or coercionFailure() T' := underDomainOf T i := [domainZero(T'), :domainOne(T')] (i := coerceInt(objNewWrap(i,T),target)) or coercionFailure() f := getFunctionFromDomain("*",target,[target,target]) i := SPADCALL(objValUnwrap i, objValUnwrap imag, f) f := getFunctionFromDomain("+",target,[target,target]) SPADCALL(objValUnwrap real,i,f) --% Quaternion commuteQuaternion(u,source,S,target,T) == u = '_$fromCoerceable_$ => canCoerce(S,target) and canCoerce(T,target) c := [objValUnwrap(coerceInt(objNewWrap(x,S),target) or coercionFailure()) for x in VEC2LIST u] q := '(Quaternion (Integer)) e := [[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] e := [(coerceInt(objNewWrap(LIST2VEC x,q),T) or coercionFailure()) for x in e] e :=[objValUnwrap(coerceInt(x,target) or coercionFailure()) for x in e] u' := domainZero(target) mult := getFunctionFromDomain("*",target,[target,target]) plus := getFunctionFromDomain("+",target,[target,target]) for x in c for y in e repeat u' := SPADCALL(u',SPADCALL(x,y,mult),plus) u' --% Fraction commuteFraction(u,source,S,target,T) == u = '_$fromCoerceable_$ => ofCategory(target,'(Field)) => canCoerce(S,target) canCoerce(S,T) and canCoerce(T,target) [n,:d] := u ofCategory(target,'(Field)) => -- see if denominator can go over to target (d' := coerceInt(objNewWrap(d,S),target)) or coercionFailure() -- if so, try to invert it inv := getFunctionFromDomain('inv,target,[target]) d' := SPADCALL(objValUnwrap d',inv) -- now coerce to target (n' := coerceInt(objNewWrap(n,S),target)) or coercionFailure() multfunc := getFunctionFromDomain("*",target,[target,target]) SPADCALL(d',objValUnwrap n',multfunc) -- see if denominator can go over to QF part of target (d' := coerceInt(objNewWrap(d,S),T)) or coercionFailure() -- if so, try to invert it inv := getFunctionFromDomain('inv,T,[T]) d' := SPADCALL(objValUnwrap d',inv) -- now coerce to target (d' := coerceInt(objNewWrap(d',T),target)) or coercionFailure() (n' := coerceInt(objNewWrap(n,S),target)) or coercionFailure() multfunc := getFunctionFromDomain("*",target,[target,target]) SPADCALL(objValUnwrap d',objValUnwrap n',multfunc) --% SquareMatrix commuteSquareMatrix(u,source,S,target,T) == u = '_$fromCoerceable_$ => canCoerce(S,target) and canCoerce(T,target) -- commuting matrices of matrices should be a no-op S is ['SquareMatrix,:.] => source=target => u coercionFailure() u' := domainZero(target) plusfunc := getFunctionFromDomain("+",target,[target,target]) multfunc := getFunctionFromDomain("*",target,[target,target]) zero := domainZero(S) [sm,n,:.] := source S' := [sm,n,$Integer] for i in 0..(n-1) repeat for j in 0..(n-1) repeat (e := u.i.j) = zero => 'iterate (e' := coerceInt(objNewWrap(e,S),target)) or coercionFailure() (Eij := coerceInt(objNewWrap(makeEijSquareMatrix(i,j,n),S'),T)) or coercionFailure() (Eij := coerceInt(Eij,target)) or coercionFailure() e' := SPADCALL(objValUnwrap(e'),objValUnwrap(Eij),multfunc) u' := SPADCALL(e',u',plusfunc) u' makeEijSquareMatrix(i, j, dim) == -- assume using 0 based scale, makes a dim by dim matrix with a -- 1 in the i,j position, zeros elsewhere LIST2VEC [LIST2VEC [((i=r) and (j=c) => 1; 0) for c in 0..(dim-1)] for r in 0..(dim-1)] --% Univariate Polynomial and Sparse Univariate Polynomial commuteUnivariatePolynomial(u,source,S,target,T) == commuteSparseUnivariatePolynomial(u,source,S,target,T) commuteSparseUnivariatePolynomial(u,source,S,target,T) == u = '_$fromCoerceable_$ => canCoerce(S,target) and canCoerce(T,target) u' := domainZero(target) null u => u' T' := underDomainOf T one := domainOne(T') monom := getFunctionFromDomain('monomial,T,[T',$NonNegativeInteger]) plus := getFunctionFromDomain("+",target,[target,target]) times := getFunctionFromDomain("*",target,[target,target]) for [e,:c] in u repeat (c := coerceInt(objNewWrap(c,S),target)) or coercionFailure() m := SPADCALL(one,e,monom) (m := coerceInt(objNewWrap(m,T),target)) or coercionFailure() c := objValUnwrap c m := objValUnwrap m u' := SPADCALL(u',SPADCALL(c,m,times),plus) u' --% Multivariate Polynomials commutePolynomial(u,source,S,target,T) == commuteMPolyCat(u,source,S,target,T) commuteMultivariatePolynomial(u,source,S,target,T) == commuteMPolyCat(u,source,S,target,T) commuteDistributedMultivariatePolynomial(u,source,S,target,T) == commuteMPolyCat(u,source,S,target,T) commuteNewDistributedMultivariatePolynomial(u,source,S,target,T) == commuteMPolyCat(u,source,S,target,T) commuteMPolyCat(u,source,S,target,T) == u = '_$fromCoerceable_$ => canCoerce(S,target) -- check constant case isconstfun := getFunctionFromDomain("ground?",source,[source]) SPADCALL(u,isconstfun) => constfun := getFunctionFromDomain("ground",source,[source]) c := SPADCALL(u,constfun) (u' := coerceInt(objNewWrap(c,S),target)) or coercionFailure() objValUnwrap(u') lmfun := getFunctionFromDomain('leadingMonomial,source,[source]) lm := SPADCALL(u,lmfun) -- has type source, is leading monom lcfun := getFunctionFromDomain('leadingCoefficient,source,[source]) lc := SPADCALL(lm,lcfun) -- has type S, is leading coef (lc' := coerceInt(objNewWrap(lc,S),target)) or coercionFailure() pmfun := getFunctionFromDomain('primitiveMonomials,source,[source]) lm := first SPADCALL(lm,pmfun) -- now we have removed the leading coef (lm' := coerceInt(objNewWrap(lm,source),T)) or coercionFailure() (lm' := coerceInt(lm',target)) or coercionFailure() rdfun := getFunctionFromDomain('reductum,source,[source]) rd := SPADCALL(u,rdfun) -- has type source, is reductum (rd' := coerceInt(objNewWrap(rd,source),target)) or coercionFailure() lc' := objValUnwrap lc' lm' := objValUnwrap lm' rd' := objValUnwrap rd' plusfun := getFunctionFromDomain("+",target,[target,target]) multfun := getFunctionFromDomain("*",target,[target,target]) SPADCALL(SPADCALL(lc',lm',multfun),rd',plusfun) ------------------------------------------------------------------------ -- Format for alist member is: domain coercionType function -- here coercionType can be one of 'total, 'partial or 'indeterm -- (indeterminant - cannot tell in a simple way). -- -- In terms of canCoerceFrom, 'total implies true, 'partial implies -- false (just cannot tell without actual data) and 'indeterm means -- to call the function with the data = "$fromCoerceable$" for a -- response of true or false. ------------------------------------------------------------------------ -- There are no entries here for RationalNumber or RationalFunction. -- These should have been changed to QF I and QF P, respectively, by -- a function like deconstructTower. RSS 8-1-85 ------------------------------------------------------------------------ SETANDFILEQ($CoerceTable, '( _ (Complex . ( _ (Expression indeterm Complex2Expr) _ (Factored indeterm Complex2FR) _ (Integer partial Complex2underDomain) _ (PrimeField partial Complex2underDomain) _ ))_ (DirectProduct . ( _ (DirectProduct partial DP2DP) _ )) _ (DistributedMultivariatePolynomial . ( _ (DistributedMultivariatePolynomial indeterm Dmp2Dmp) _ (Expression indeterm Dmp2Expr) _ (Factored indeterm Mp2FR) _ (HomogeneousDistributedMultivariatePolynomial indeterm Dmp2NDmp) _ (MultivariatePolynomial indeterm Dmp2Mp) _ (Polynomial indeterm Dmp2P) _ (UnivariatePolynomial indeterm Dmp2Up) _ ))_ (Expression . ( (Complex partial Expr2Complex) _ (DistributedMultivariatePolynomial indeterm Expr2Dmp) _ (HomogeneousDistributedMultivariatePolynomial indeterm Expr2Dmp) _ (MultivariatePolynomial indeterm Expr2Mp) _ (UnivariateLaurentSeries indeterm P2Uls) _ (UnivariatePolynomial indeterm Expr2Up) _ (UnivariatePuiseuxSeries indeterm P2Upxs) _ (UnivariateTaylorSeries indeterm P2Uts) _ )) _ (Kernel . ( _ (Kernel indeterm Ker2Ker) _ (Expression indeterm Ker2Expr) _ )) _ (Factored . ( _ (Factored indeterm Factored2Factored) _ ))_ (Fraction . ( _ (DistributedMultivariatePolynomial partial Qf2domain) _ (ElementaryFunction indeterm Qf2EF) _ (Expression indeterm Qf2EF) _ (Fraction indeterm Qf2Qf) _ (HomogeneousDistributedMultivariatePolynomial partial Qf2domain) _ (Integer partial Qf2domain) _ (MultivariatePolynomial partial Qf2domain) _ (Polynomial partial Qf2domain) _ (PrimeField indeterm Qf2PF) _ (UnivariateLaurentSeries indeterm P2Uls) _ (UnivariatePolynomial partial Qf2domain) _ (UnivariatePuiseuxSeries indeterm P2Upxs) _ (UnivariateTaylorSeries indeterm P2Uts) _ ))_ (Int . ( _ (Expression total ncI2E) _ (Integer total ncI2I) _ ))_ (Baby . ( _ (Expression total ncI2E) _ (Integer total ncI2I) _ ))_ (Integer . ( _ (Baby total I2ncI) _ (EvenInteger partial I2EI) _ (Int total I2ncI) _ (NonNegativeInteger partial I2NNI) _ (OddInteger partial I2OI) _ (PositiveInteger partial I2PI) _ ))_ (List . ( _ (DirectProduct indeterm L2DP) _ (Matrix partial L2M) _ (Record partial L2Record) _ (RectangularMatrix partial L2Rm) _ (Set indeterm L2Set) _ (SquareMatrix partial L2Sm) _ (Stream indeterm Agg2Agg) _ (Tuple indeterm L2Tuple) _ (Vector indeterm L2V) _ ))_ )) SETANDFILEQ($CoerceTable,NCONC($CoerceTable,'( _ (Matrix . ( _ (List indeterm M2L) _ (RectangularMatrix partial M2Rm) _ (SquareMatrix partial M2Sm) _ (Vector indeterm M2L) _ ))_ (MultivariatePolynomial . ( _ (DistributedMultivariatePolynomial indeterm Mp2Dmp) _ (Expression indeterm Mp2Expr) _ (Factored indeterm Mp2FR) _ (HomogeneousDistributedMultivariatePolynomial indeterm domain2NDmp) _ (MultivariatePolynomial indeterm Mp2Mp) _ (Polynomial indeterm Mp2P) _ (UnivariatePolynomial indeterm Mp2Up) _ ))_ (HomogeneousDirectProduct . ( _ (HomogeneousDirectProduct indeterm DP2DP) _ ))_ (HomogeneousDistributedMultivariatePolynomial . ( _ (Complex indeterm NDmp2domain) _ (DistributedMultivariatePolynomial indeterm NDmp2domain) _ (Expression indeterm Dmp2Expr) _ (Factored indeterm Mp2FR) _ (Fraction indeterm NDmp2domain) _ (HomogeneousDistributedMultivariatePolynomial indeterm NDmp2NDmp) _ (MultivariatePolynomial indeterm NDmp2domain) _ (Polynomial indeterm NDmp2domain) _ (Quaternion indeterm NDmp2domain) _ (UnivariatePolynomial indeterm NDmp2domain) _ ))_ (OrderedVariableList . ( _ (DistributedMultivariatePolynomial indeterm OV2poly) _ (HomogeneousDistributedMultivariatePolynomial indeterm OV2poly) _ (MultivariatePolynomial indeterm OV2poly) _ (OrderedVariableList indeterm OV2OV) _ (Polynomial total OV2P) _ (Symbol total OV2Sy) _ (UnivariatePolynomial indeterm OV2poly) _ ))_ (Polynomial . ( _ (DistributedMultivariatePolynomial indeterm P2Dmp) _ (Expression indeterm P2Expr) _ (Factored indeterm P2FR) _ (HomogeneousDistributedMultivariatePolynomial partial domain2NDmp) _ (MultivariatePolynomial indeterm P2Mp) _ (UnivariateLaurentSeries indeterm P2Uls) _ (UnivariatePolynomial indeterm P2Up) _ (UnivariatePuiseuxSeries indeterm P2Upxs) _ (UnivariateTaylorSeries indeterm P2Uts) _ ))_ (Set . ( _ (List indeterm Set2L) _ (Vector indeterm Agg2L2Agg) _ ))_ (RectangularMatrix . ( _ (List indeterm Rm2L) _ (Matrix indeterm Rm2M) _ (SquareMatrix indeterm Rm2Sm) _ (Vector indeterm Rm2V) _ ))_ (SparseUnivariatePolynomial . ( _ (UnivariatePolynomial indeterm SUP2Up) _ ))_ (SquareMatrix . ( -- ones for polys needed for M[2] P I -> P[x,y] M[2] P I, say (DistributedMultivariatePolynomial partial Sm2PolyType) _ (HomogeneousDistributedMultivariatePolynomial partial Sm2PolyType) _ (List indeterm Sm2L) _ (Matrix indeterm Sm2M) _ (MultivariatePolynomial partial Sm2PolyType) _ (RectangularMatrix indeterm Sm2Rm) _ (UnivariatePolynomial indeterm Sm2PolyType) _ (Vector indeterm Sm2V) _ ) ) _ (Symbol . ( _ (DistributedMultivariatePolynomial indeterm Sy2Dmp) _ (HomogeneousDistributedMultivariatePolynomial indeterm Sy2NDmp) _ (MultivariatePolynomial indeterm Sy2Mp) _ (OrderedVariableList partial Sy2OV) _ (Polynomial total Sy2P) _ (UnivariatePolynomial indeterm Sy2Up) _ (Variable indeterm Sy2Var) _ ) ) _ (UnivariatePolynomial . ( _ (DistributedMultivariatePolynomial indeterm Up2Dmp) _ (Expression indeterm Up2Expr) _ (Factored indeterm Up2FR) _ (HomogeneousDistributedMultivariatePolynomial indeterm domain2NDmp) _ (MultivariatePolynomial indeterm Up2Mp) _ (Polynomial indeterm Up2P) _ (SparseUnivariatePolynomial indeterm Up2SUP) _ (UnivariatePolynomial indeterm Up2Up) _ ) ) _ (Variable . ( _ (AlgebraicFunction total Var2FS) _ (ContinuedFractionPowerSeries indeterm Var2OtherPS) _ (DistributedMultivariatePolynomial indeterm Var2Dmp) _ (ElementaryFunction total Var2FS) _ (Fraction indeterm Var2QF) _ (FunctionalExpression total Var2FS) _ (GeneralDistributedMultivariatePolynomial indeterm Var2Gdmp) _ (HomogeneousDistributedMultivariatePolynomial indeterm Var2NDmp) _ (LiouvillianFunction total Var2FS) _ (MultivariatePolynomial indeterm Var2Mp) _ (OrderedVariableList indeterm Var2OV) _ (Polynomial total Var2P) _ (SparseUnivariatePolynomial indeterm Var2SUP) _ (Symbol total Identity) _ (UnivariatePolynomial indeterm Var2Up) _ (UnivariatePowerSeries indeterm Var2UpS) _ ) ) _ (Vector . ( _ (DirectProduct indeterm V2DP) _ (List indeterm V2L) _ (Matrix indeterm V2M) _ (RectangularMatrix indeterm V2Rm) _ (Set indeterm Agg2L2Agg) _ (SquareMatrix indeterm V2Sm) _ (Stream indeterm Agg2Agg) _ ) ) _ ) ) ) -- this list is too long for the parser, so it has to be split into parts -- specifies the commute functions -- commute stands for partial commute function --SETANDFILEQ($CommuteTable, '( _ -- (DistributedMultivariatePolynomial . ( _ -- (DistributedMultivariatePolynomial commute commuteMultPol) _ -- (Complex commute commuteMultPol) _ -- (MultivariatePolynomial commute commuteMultPol) _ -- (NewDistributedMultivariatePolynomial commute commuteMultPol) _ -- (Polynomial commute commuteMultPol) _ -- (Quaternion commute commuteMultPol) _ -- (Fraction commute commuteMultPol) _ -- (SquareMatrix commute commuteMultPol) _ -- (UnivariatePolynomial commute commuteMultPol) _ -- )) _ -- (Complex . ( _ -- (DistributedMultivariatePolynomial commute commuteG2) _ -- (MultivariatePolynomial commute commuteG2) _ -- (NewDistributedMultivariatePolynomial commute commuteG2) _ -- (Polynomial commute commuteG1) _ -- (Fraction commute commuteG1) _ -- (SquareMatrix commute commuteG2) _ -- (UnivariatePolynomial commute commuteG2) _ -- )) _ -- (MultivariatePolynomial . ( _ -- (DistributedMultivariatePolynomial commute commuteMultPol) _ -- (Complex commute commuteMultPol) _ -- (MultivariatePolynomial commute commuteMultPol) _ -- (NewDistributedMultivariatePolynomial commute commuteMultPol) _ -- (Polynomial commute commuteMultPol) _ -- (Quaternion commute commuteMultPol) _ -- (Fraction commute commuteMultPol) _ -- (SquareMatrix commute commuteMultPol) _ -- (UnivariatePolynomial commute commuteMultPol) _ -- )) _ -- (Polynomial . ( _ -- (DistributedMultivariatePolynomial commute commuteMultPol) _ -- (Complex commute commuteMultPol) _ -- (MultivariatePolynomial commute commuteMultPol) _ -- (NewDistributedMultivariatePolynomial commute commuteMultPol) _ -- (Polynomial commute commuteMultPol) _ -- (Quaternion commute commuteMultPol) _ -- (Fraction commute commuteMultPol) _ -- (SquareMatrix commute commuteMultPol) _ -- (UnivariatePolynomial commute commuteMultPol) _ -- )) _ -- (Quaternion . ( _ -- (DistributedMultivariatePolynomial commute commuteQuat2) _ -- (MultivariatePolynomial commute commuteQuat2) _ -- (NewDistributedMultivariatePolynomial commute commuteQuat2) _ -- (Polynomial commute commuteQuat1) _ -- (SquareMatrix commute commuteQuat2) _ -- (UnivariatePolynomial commute commuteQuat2) _ -- )) _ -- (SquareMatrix . ( _ -- (DistributedMultivariatePolynomial commute commuteSm2) _ -- (Complex commute commuteSm1) _ -- (MultivariatePolynomial commute commuteSm2) _ -- (NewDistributedMultivariatePolynomial commute commuteSm2) _ -- (Polynomial commute commuteSm1) _ -- (Quaternion commute commuteSm1) _ -- (SparseUnivariatePolynomial commute commuteSm1) _ -- (UnivariatePolynomial commute commuteSm2) _ -- )) _ -- (UnivariatePolynomial . ( _ -- (DistributedMultivariatePolynomial commute commuteUp2) _ -- (Complex commute commuteUp1) _ -- (MultivariatePolynomial commute commuteUp2) _ -- (NewDistributedMultivariatePolynomial commute commuteUp2) _ -- (Polynomial commute commuteUp1) _ -- (Quaternion commute commuteUp1) _ -- (Fraction commute commuteUp1) _ -- (SparseUnivariatePolynomial commute commuteUp1) _ -- (SquareMatrix commute commuteUp2) _ -- (UnivariatePolynomial commute commuteUp2) _ -- )) _ -- )) SETANDFILEQ($CommuteTable, '( _ (Complex . ( _ (DistributedMultivariatePolynomial commute commuteG2) _ (MultivariatePolynomial commute commuteG2) _ (HomogeneousDistributedMultivariatePolynomial commute commuteG2) _ (Polynomial commute commuteG1) _ (Fraction commute commuteG1) _ (SquareMatrix commute commuteG2) _ (UnivariatePolynomial commute commuteG2) _ )) _ (Polynomial . ( _ (Complex commute commuteMultPol) _ (MultivariatePolynomial commute commuteMultPol) _ (HomogeneousDistributedMultivariatePolynomial commute commuteMultPol)_ (Polynomial commute commuteMultPol) _ (Quaternion commute commuteMultPol) _ (Fraction commute commuteMultPol) _ (SquareMatrix commute commuteMultPol) _ (UnivariatePolynomial commute commuteMultPol) _ )) _ (SquareMatrix . ( _ (DistributedMultivariatePolynomial commute commuteSm2) _ (Complex commute commuteSm1) _ (MultivariatePolynomial commute commuteSm2) _ (HomogeneousDistributedMultivariatePolynomial commute commuteSm2)_ (Polynomial commute commuteSm1) _ (Quaternion commute commuteSm1) _ (SparseUnivariatePolynomial commute commuteSm1) _ (UnivariatePolynomial commute commuteSm2) _ )) _ )) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}