\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input zimmer.input} \author{The Axiom Team} \maketitle \begin{abstract} These examples come from Postel & Zimmermann's paper in the 5th Rhine Conference on Computer Algebra. \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> )set break resume -- First Order Equations -- 1 u := operator 'u ode := (x^4-x^3)*D(u x,x) + 2*x^4*u(x) = x^3/3 + C solve(ode,u,x) -- 2 )clear all u := operator 'u ode := -D(u x,x)/2 + u(x) = sin(x) solve(ode,u,x) -- 3 )clear all y := operator 'y ode := D(y x,x) = y(x)/(y(x)*log(y(x)) + x) solve(ode,y,x) -- 4 )clear all y := operator 'y ode := 2*y(x)*D(y x,x)^2 -2*x*D(y x,x)-y(x) = 0 solve(ode,y,x) -- 5 )clear all y := operator 'y ode := D(y x,x) + y(x) = y(x)^3*sin(x) solve(ode,y,x) -- 6 )clear all y := operator 'y P := operator 'P Q := operator 'Q ode := D(y x,x) + P(x)*y(x) = Q(x)*y(x)^n solve(ode,y,x) solve(eval(ode,n=1),y,x) solve(eval(ode,n=2),y,x) solve(eval(ode,n=%pi),y,x) solve(eval(ode,n=%e),y,x) solve(eval(ode,n=sqrt(2)),y,x) -- 7 )clear all y := operator 'y ode := (x^2-1)*D(y x,x)^2 - 2*x*y(x)*D(y x,x)+(y x)^2 - 1 = 0 solve(ode,y,x) -- 8 )clear all y := operator 'y f := operator 'f g := operator 'g ode := f(x*D(y x,x) - y(x)) = g(D(y x,x)) solve(ode,y,x) -- 9 )clear all y := operator 'y ode := D(y x,x) = (3*x^2-y(x)^2-7)/(exp(y(x))+2*x*y(x)+1) solve(ode,y,x) -- 10 )clear all y := operator 'y ode := D(y x,x) = (2*x^3*y(x) - (y x)^4)/(x^4 - 2*x*(y x)^3) solve(ode,y,x) -- 11 )clear all y := operator 'y ode := D(y x,x)*(D(y x,x) + y(x)) = x*(x + y(x)) solve(ode,y,x) -- 12 )clear all y := operator 'y ode := D(y x,x) = x/(x^2*(y x)^2 + (y x)^5) solve(ode,y,x) -- 13 )clear all y := operator 'y ode := y(x) = 2*x*D(y x,x) - a*D(y x,x)^3 solve(ode,y,x) -- 14 )clear all y := operator 'y ode := y(x) = 2*x*D(y x,x) - D(y x,x)^3 solve(ode,y,x) -- 15 )clear all y := operator 'y ode := D(y x,x) = exp(x)*(y x)^2 - y(x) + exp(-x) solve(ode,y,x) -- 16 )clear all y := operator 'y ode := D(y x,x) = (y x)^2 - x*y(x) + 1 solve(ode,y,x) -- 17 )clear all y := operator 'y ode := D(y x,x) = (9*x^8 + 1)/((y x)^2 +1) solve(ode,y,x) -- 18 )clear all y := operator 'y ode := y(x)=2*x*D(y x,x) + y(x)*D(y x,x)^2 solve(ode,y,x) -- 19 )clear all y := operator 'y ode := x = y(x)*D(y x,x) - x*D(y x,x)^2 solve(ode,y,x) -- Second Order Equations -- 20 )clear all y := operator 'y ode := D(y x,x,2)*(a*x+b)^2+4*D(y x,x)*(a*x+b)*a+2*y(x)*a^2=0 solve(ode,y,x) -- 21 )clear all u := operator 'u ode := (x^2 - x)*D(u x,x,2) + (2*x^2+4*x-3)*D(u x,x) + 8*x*u(x)=1 solve(ode,u,x) -- 22 )clear all w := operator 'w ode := (x^2 - x)*D(w x,x,2) + (1-2*x^2)*D(w x,x) + (4*x - 2)*w(x) = 0 solve(ode,w,x) -- 23 )clear all y := operator 'y ode := D(y x,x,2) - D(y x,x) = 2*y(x)*D(y x,x) solve(ode,y,x) -- 24 )clear all y := operator 'y ode := D(y x,x,2)/y(x) - D(y x,x)^2/y(x)^2 -1 + y(x)^(-3) = 0 solve(ode,y,x) -- 25 )clear all y := operator 'y ode := D(y x,x,2) + 2*x*D(y x,x) = 2*x solve(ode,y,x) -- 26 )clear all y := operator 'y ode := 2*y(x)*D(y x,x,2) - D(y x,x)^2 = (D(y x,x) - x*D(y x,x,2))^2/3 solve(ode,y,x) -- 27 )clear all y := operator 'y ode := x*D(y x,x,2) = 2*y(x)*D(y x,x) solve(ode,y,x) -- 28 )clear all y := operator 'y ode := (1-x)*(y(x)*D(y x,x,2) - D(y x,x)^2) + x^2*y(x)^2 = 0 solve(ode,y,x) -- 29 )clear all y := operator 'y ode := x*y(x)*D(y x,x,2) + x*D(y x,x)^2 + y(x)*D(y x,x) = 0 solve(ode,y,x) -- 30 )clear all y := operator 'y ode := D(y x,x,2)^2 - 2*D(y x,x,2)*D(y x,x) + 2*y(x)*D(y x,x) -y(x)^2 = 0 solve(ode,y,x) -- 31 )clear all y := operator 'y ode := (x^3/2-x^2)*D(y x,x,2) + (2*x^2-3*x+1)*D(y x,x) + (x-1)*y(x) = 0 solve(ode,y,x) -- 32 )clear all y := operator 'y ode := D(y x,x,2) - 2*x*D(y x,x) + 2*y(x) = 3 solve(ode,y,x) -- 33 )clear all y := operator 'y ode := sqrt(x)*D(y x,x,2) + 2*x*D(y x,x) + 3*y(x) = 0 solve(ode,y,x) -- 34 )clear all y := operator 'y ode := x^2*D(y x,x,2) + 3*x*D(y x,x) = 1/(x^4*y(x)^3) solve(ode,y,x) -- 35 )clear all y := operator 'y ode := D(y x,x,2) - 2/x^2*y(x) = 7*x^4 +3*x^3 solve(ode,y,x) -- 36 )clear all y := operator 'y ode := D(y x,x,2) +y(x) = csc(x) solve(ode,y,x) -- Higher Order Equations -- 37 )clear all y := operator 'y ode := D(y x,x,7) - 14*D(y x,x,6) +80*D(y x,x,5) -242*D(y x,x,4) + _ 419*D(y x,x,3) - 416*D(y x,x,2) +220*D(y x,x) -48*y(x) = 0 solve(ode,y,x) -- 38 )clear all y := operator 'y ode := D(y x,x,4) -4/x^2*D(y x,x,2) + 8/x^3*D(y x,x) -8/x^4*D(y x,x) = 0 solve(ode,y,x) -- 39 )clear all y := operator 'y ode := (1+x+x^2)*D(y x,x,3) + (3+6*x)*D(y x,x,2) +6*D(y x,x) = 6*x solve(ode,y,x) -- 40 )clear all y := operator 'y ode := (D(y x,x)^2 +1)*D(y x,x,3) - 3*D(y x,x)*D(y x,x,2) = 0 solve(ode,y,x) -- 41 )clear all y := operator 'y ode := 3*D(y x,x,2)*D(y x,x,4) - 5*D(y x,x,3)^2 = 0 solve(ode,y,x) -- Special Equations -- 42 )clear all y := operator 'y ode := D(y t,t) + a*y(t-1) = 0 solve(ode,y,t) -- 43 )clear all y := operator 'y ode := D(y(x,a),x) = a*y(x,a) solve(ode,y,x) -- 44 )clear all y := operator 'y ode := D(y x,x,4) = sin(x) solve(ode,y,x=0,[0,0,0,0]) -- 45 )clear all y := operator 'y ode := x*D(y x,x,2) + D(y x,x) +2*x*y(x) =0 solve(ode,y,x=0,[1,0]) -- 46 )clear all y := operator 'y ode := x*D(y x,x)^2 -(y x)^2 + 1 = 0 solve(ode,y,x=0,[1]) -- 47 )clear all y := operator 'y ode := D(y x,x,2) + y(x)*D(y x,x)^3 = 0 solve(ode,y,x=0,[0,2]) -- Systems Of equations -- 48 )clear all x := operator 'x y := operator 'y z := operator 'z odes := [D(x t,t) = -3*y(t)*z(t), D(y t,t) = 3*x(t)*z(t), D(z t,t) = -x(t)*y(t)] solve(odes,[x,y,z],t) -- 49 )clear all x := operator 'x y := operator 'y a := operator 'a b := operator 'b odes := [D(x t,t) = a(t)*((y t)^2 - (x t)^2) + 2*b(t)*x(t)*y(t) + 2*c*x(t), D(y t,t) = b(t)*((y t)^2 - (x t)^2) - 2*a(t)*x(t)*y(t) + 2*c*y(t)] solve(odes,[x,y],t) -- 50 )clear all x := operator 'x y := operator 'y odes := [D(x t,t) = x(t)*(1+cos(t)/(2+sin(t))), D(y t,t) = x(t) - y(t)] solve(odes,[x,y],t) -- 51 )clear all x := operator 'x y := operator 'y odes := [D(x t,t) = 9*x(t) + 2*y(t), D(y t,t) = x(t) + 8*y(t)] solve(odes,[x,y],t) -- 52 )clear all x := operator 'x y := operator 'y odes := [D(x t,t) - x(t) - 2*y(t) = 0, D(x t,t,2) - 2*D(y t,t) = 2*t - cos(2*t)] solve(odes,[x,y],t) -- 53 )clear all y1 := operator 'y1 y2 := operator 'y2 odes := [D(y1 x,x) = -1/(x*(x^2 + 1))*y1(x) + 1/(x^2*(x^2 + 1))*y2(x)+1/x, D(y2 x,x) = -x^2/(x^2 + 1)*y1(x) + (2*x^2+1)/x/(x^2+1)*y2(x)+1] solve(odes,[y1,y2],x) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}