\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input tutChap67.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> (vecA,vecB) : Vector Integer vecA := vector [3,0,4] vecB := vector [2,4,-2] vecA + vecB vecA - vecB 5*vecA vecB*7 vecB/2 1/2 * vecB vecA * (1/2) dot(vecA,vecB) sqrt dot(vecA,vecA) magnitude vecA direction x == 1/magnitude x * x direction vecA magnitude direction vecB p := vector [u1*t,u2*t,u3*t-1/2*g*t^2] D(p,t) DV(s,t) == map(x+->D(x,t),s) v := DV(p,t) -- the velocity, a := DV(v,t) -- acceleration j := DV(a,t) -- and jerk )clear properties all s := operator 's; sSol := solve(D(s(t),t,2) - aF + r/m*D(s(t),t),s,t=0,[0,u]) u := vector [ux,uy] aF := vector [0,-g] function(sSol ,'s,'t) s t function(numerator sSol,'n,'t) function(1/denominator sSol*n(t),'s,'t) s t outputGeneral 6 map(x+->eval(x,[m=1,ux=20,uy=10,r=0.1,g=9.8]),s t) draw(curve(%.1,%.2),t=0..2) map(x+->eval(x,[m=1,ux=20,uy=10,r=0,g=9.8]),s t) map(x+->limit(x,r=0),s t) map(x+->eval(x,[m=1,ux=20,uy=10,g=9.8]),%::Vector Expression Integer) draw(curve(%.1,%.2),t=0..2) Integer has Ring PositiveInteger has Ring has(Fraction Integer,DivisionRing) has(Integer,DivisionRing) List has Group List ? has Group Field has Ring Group has Ring vecC := vector [0,x +-> x,[a,b,c]] matA := matrix [[x,0],[7.3,%i]] vecC(1) vecC.2 vecC 3 vecD : Vector Integer := [1,2,3,4,5,6] matB : Matrix Integer := [[1,2,3],[4,5,6]] vector [1,2,3] :: Matrix Integer matA(1,2) matrix [[matA]] matrix [[matA::SquareMatrix(2,Polynomial Complex Float)]] matrix [[squareMatrix matA]] matC := matrix [[a,b,c],[d,e,f]] lvec := vector [2,3] rvec := vector [4,5,6] lvec * matC matC * rvec lrvec := vector [1,2] lrvec * ((matrix [[a,b],[c,d]] * lrvec) :: Matrix Polynomial Integer) vecD := new(5,0) new(3,3,0)$Matrix Integer Z3 := %; I3 := Z3; I3(1,1) := 1; I3(2,2) := 1; I3(3,3) := 1; I3 I3 := Z3; for k in [1,2,3] repeat I3(k,k) := 1 I3 I3 := Z3; for k in 1..3 repeat I3(k,k) := 1 I3 expand(-7/2..7/3) for i in 11..20 repeat _ ( print i; _ if prime? i then messagePrint(" (That was prime.)")$OutputForm ) poly := 0; for i in [1,2,3,4] for c in ['a,'b,'c,'d] repeat poly := poly + i*c poly vecC := vector [n^2 for n in 1..3] hilbert3 := matrix [[1/(i+j) for i in 1..3] for j in 1..3] I3 := matrix [[((m,n)+->if m=n then 1 else 0)(i,j) _ for i in 1..3] for j in 1..3] diagonalMatrix [1,1,1] inverse hilbert3 % * hilbert3 matC := matrix [[a,b],[c,d]] inverse matC determinant matC (x-a)^2 + (y-b)^2 - r^2 = 0 row1 := [1,x,y,x^2+y^2] row2 := [eval(row1.i,[x,y],[0,1]) for i in 1..4] row3 := [eval(row1.i,[x,y],[1,0]) for i in 1..4]; row4 := [eval(row1.i,[x,y],[-1,-1]) for i in 1..4]; determinant [row1,row2,row3,row4] = 0 solve([[1/(i+j) for i in 1..3] for j in 1..3],[3,5,7]) matD := matrix [[1,2,3,4],[2,3,4,5],[3,4,5,6],[4,5,6,7]] c := vector [5,6,7,8] solve(matD,c) horizConcat(matD,c) rank % rank matD solve([[2,3,4,5],[3,4,5,6],[4,5,6,7]],[5,6,7]) subMatrix(matD,1,3,1,4) rank horizConcat(matD,vector [5,6,7,9]) solve(matD,[5,6,7,9]) hilbert3 :: Matrix DoubleFloat -- continuing the previous session % * inverse % matrix [[1/(i+j) for i in 1..11] for j in 1..11]::Matrix DoubleFloat; badUnit := % * inverse % diagEls := set [%(i,i) for i in 1..11] min diagEls max diagEls offDiags := empty()$Set DoubleFloat for i in 1..11 repeat _ for j in 1..11 | i ~= j repeat _ offDiags := union(offDiags,badUnit(i,j)) min offDiags max offDiags hilbert11 := matrix [[1/(i+j) for i in 1..11] for j in 1..11] % * inverse % detHilbert3 := determinant hilbert3 detHilbert11 := determinant hilbert11 % :: DoubleFloat determinant(hilbert11::Matrix DoubleFloat) test3 := hilbert3 :: Matrix Polynomial Fraction Integer test3(1,1) := (1 + eps)/2 determinant test3 (% - detHilbert3)/detHilbert3 for i in 1..3 repeat for j in 1..3 repeat _ test3(i,j) := hilbert3(i,j) + (2*randnum(2) - 1)*eps test3 (determinant test3 - detHilbert3)/detHilbert3 error3 := matrix [[eps[i,j] for i in 1..3] for j in 1..3] test3 := hilbert3 + t*error3 detErr := (determinant test3 - detHilbert3)/detHilbert3 detErrReduced := coefficient(%,'t,1) coefficient(detErr,'t,0) epses := variables detErrReduced coefs := coefficients detErrReduced index := first sort((i,j)+->abs coefs.i > abs coefs.j, expand(1..9)) epses.5 coefs.5 sort((i,j)+->abs i > abs j, coefs).2 @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}