\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input tutChap3.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> D(x^2,x) D(sin x,x) D(sin(log(x/tan(x))),x) D(tan x,x,2) D(tan x,x,3) D(sin(x*y),x) D(sin(x*y),[y,x,x]) dalembert := operator _[_] dalembert u J0 := operator script(J,[[0]]::List List OutputForm) symbol[sub1,sub2] f := operator 'f; g := operator 'g; D(f(x)*g(x),x) D(f(x)/g(x),x) D(f(g(x)),x) r := operator 'r; theta := operator 'theta ; x(t) == r(t)*cos theta t y(t) == r(t)*sin theta t D(x(t),t) D(y(t),t) )clear all r := operator 'r; theta := operator 'theta; r := r(t); theta := theta(t); x == r*cos theta; y == r*sin theta; ax := D(x,t,2); ay := D(y,t,2); eval(ax,theta=0) eval(ay,theta=0) f := operator 'f D(f(r,theta),t) D(f(r,theta),t,2) )clear p x -- since x has a value integrate(x^2,x) integrate(%e^x,x) integrate(1/x,x) integrate(sin x,x) I ==> integrate I(x^3,x) I(sin sin x,x) I(x^n,x) % - 1/(n + 1) limit(%,n=-1) In := %% 17 limit(%,n=-1) )set stream calculate 5 series(In,n=-1) -- expand In in powers of (n+1) In2 := In - x*%e^(-log(x))*(n+1)^(-1) limit(In2,n=-1) limit(x^(n+1)/(n+1),n=-1) limit(x^(n+1)/(n+1)-1/(n+1),n=-1) I(1/(a+x^2),x) series(second %, a=0) second %% 27 (rule atan A == acot(1/A)) % I(atan x - acot(1/x),x) atanRule := rule atan(A) == acot(1/A) atanRule atan x rSimp := rule(sqrt(x^(2*(n|even? n))) == x^n) rSimp(sqrt(x^4)) rSimp(sqrt(x^6)) f := operator 'f; g := operator 'g; dprod := D(f(x)*g(x),x) (rule f x == sin x)% (rule g x == exp x)% (rule (f x == sin x; g x == cos x))dprod substitutions := (rule (f x == sec x; g x == csc x)) substitutions dprod I(cot x, x) normalize % simplify % (rule N*log A + M*log B == log(A^N*B^M)) % (rule log(A^N) == N*log A)% ii:=I(1/(x^3 + x + 1),x) T0:= (tower ii).2 ::EXPR INT f:=definingPolynomial T0 outputGeneral 5 solve((numerator f) :: POLY INT,0.00001) eval(ii :: EXPR COMPLEX FLOAT,T0= rhs first %) solve((numerator f) :: POLY INT,1/100000) eval(ii,T0=rhs first %) :: EXPR Complex Integer complexForm % % :: EXPR Float @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}