\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input tutChap2.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> solve(3*x=x+2) x solve(3*x - 1 = 0) solve(3*x - 1) solve(3*x^2 - 7*x + 2) solve(x^2 - 2) solve(x^4 - 8*x^3 + 23*x^2 - 28*x + 12) factor(x^4 - 8*x^3 + 23*x^2 - 28*x + 12) radicalSolve(x^2 - 2) radicalSolve(x^5+x^2+1) solve(x^2 - 2, 0.00001) outputGeneral 6 %%(11) solve(x^2 - 2, 1/100000) solve(x^2-2*x+3,0.00001) complexSolve(x^2-2*x+3,0.00001) solve((x^2 - 1.21) :: Polynomial Fraction Integer,0.00001) radicalSolve(a*x^2 + b*x + c, x) qs := %; -- the semicolon (;) inhibits AXIOM's output display qs1 := qs.1 x1 := rhs % numeric rhs %%(9).1 xs := map(rhs, qs) xs.1 + xs.2 xs.1 * xs.2 solve [x + 2*y + z = 5, 2*x - y - z = 6, x + y + 2*z = 0] solve [x^2 + y + 1, x + y^2 - 1] solve([x^2 + y + 1, x + y^2 - 1], 0.00001) complexSolve([x^2 + y + 1, x + y^2 - 1], 0.00001) solve([x^2-y^2, (x^2 -1)/(x+y)]) a := (x + y)/2 a :: Fraction Polynomial Integer a a := a :: Fraction Polynomial Integer a a := (x + y)/2; b : Fraction Polynomial Integer := a a : Fraction Polynomial Integer := a y := x^2 + 3*x + 2 y := y :: Factored Polynomial Integer )clear p y -- since y has a value P := (y + z)*x^2 + z*x + c P :: UP(x, POLY INT) P :: UP(x, UP(y, POLY INT)) P := P :: UP(x, UP(y, UP(z, UP(c, INT)))) )clear p all sum(1/((3*r-2)*(3*r+1)*(3*r+4)), r=1..n) limit(%, n=%plusInfinity) SA := sum(a + (r-1)*b, r = 1..n) SA :: UP(a, Polynomial Fraction Integer) SA :: UP(a, UP(b, FRAC FR POLY INT)) SG := sum(a*b^(r-1), r=1..n) )set stream calculate 5 series((1 + x)^n, x=0) taylor((1 + x)^n, x=0) %.6 xPositive? == (x :: Float > 0) x := 17-sqrt(300); xPositive? x := 18-sqrt(300); xPositive? )clear p x x xPositive? halfSum(x, y) == (x + y)/2 halfSum(1, 3) halfSum(1.5, 2.5) halfSum(2, 4) f(n)==#(string(2^n)) f(20) f(n) == (local length; length := #(string(2^n)); _ if length > 120 then "Too long!" else length) f 100 f 1000 f(n : PositiveInteger) : Any == _ (local length; length := #(string(2^n)); _ if length > 120 then "Too long!" else length) f 0 g1(x) == 2*x g2(x) == % G := 2*x g3(x) == G g1(1) g2(2) g3(3) l1 := [1,2,3,4,5] l2 := map(x +-> x^2,l1) BE(n) == taylor((1+x)^n, x=0) BE(5) BE(6) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}