\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input scherk.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1994. @ <<*>>= <<license>> -- Scherk's minimal surface. -- Defined by: -- exp(z) * cos(x) = cos(y) -- See: A comprehensive Introduction to Differential Geometry, Vol. 3, -- by Michael Spivak, Publish Or Persih, Berkeley, 1979, pp 249-252. -- Off set for a single piece of Scherk's minimal surface (xOffset, yOffset):DoubleFloat -- DrawScherk's minimal surface on an m by n patch. drawScherk(m,n) == free xOffset, yOffset space := create3Space()$ThreeSpace(DoubleFloat) for i in 0..m-1 repeat xOffset := i*%pi for j in 0 .. n-1 repeat rem(i+j, 2) = 0 => 'iter yOffset := j*%pi drawOneScherk(space) makeViewport3D(space, "Scherk's Minimal Surface") -- The four patches which make up a single piece of Scherk's minimal surface. scherk1(u,v) == x := cos(u)/exp(v) point [xOffset + acos(x), yOffset + u, v, abs(v)] scherk2(u,v) == x := cos(u)/exp(v) point [xOffset - acos(x), yOffset + u, v, abs(v)] scherk3(u,v) == x := exp(v) * cos(u) point [xOffset + u, yOffset + acos(x), v, abs(v)] scherk4(u,v) == x := exp(v) * cos(u) point [xOffset + u, yOffset - acos(x), v, abs(v)] -- We draw the surface by breaking it into 4 patches, and drawing them -- into a single space. drawOneScherk(s) == makeObject(scherk1, -%pi/2..%pi/2, 0..%pi/2, space == s, _ var1Steps == 28, var2Steps == 28) makeObject(scherk2, -%pi/2..%pi/2, 0..%pi/2, space == s, _ var1Steps == 28, var2Steps == 28) makeObject(scherk3, -%pi/2..%pi/2, -%pi/2..0, space == s, _ var1Steps == 28, var2Steps == 28) makeObject(scherk4, -%pi/2..%pi/2, -%pi/2..0, space == s, _ var1Steps == 28, var2Steps == 28) void() @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}