\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input r21bugsbig.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject <<*>>= -- takes a long time )clear completely )set expose add constructor CyclotomicPolynomialPackage )set message type off )set message time off n : PositiveInteger := 5 UZn : List(PositiveInteger) := [i for i in 1 .. n-1 | gcd(i,n) = 1] -- K = Q(t), corps des fractions rationnelles a Phi(n) indeterminees sur Q vars : List(Symbol) := [concat("t", i::String)::Symbol for i in 0 ..#UZn-1] ; Zt := DistributedMultivariatePolynomial(vars, Integer) ; K :=Fraction(Zt) ; t : List(K) := [v::K for v in vars] -- ATTENTION : on specialise certains des indeterminees t(#t) := 0 ; t Zn := IntegerMod(n) ; rapport(i : Integer, j : Integer) : Integer == -- returns <i/j> modulo n k : Zn := i * recip(j::Zn)::Zn return convert(k) Phi : UP('xi, K) := map(coerce, cyclotomic(n)) -- E est l'extension cyclotomique de K par les racines n-iemes de l'unite E := SimpleAlgebraicExtension(K, UP('xi, K), Phi) ; xi : E := generator()$E ; bList : List(E) := [reduce(+, [t(i+1) * xi**(i*j) for i in 0 .. #UZn-1]) for j in UZn] -- delta(j) = delta(j, 1) avec les nouvelles notations delta : List(E) := [reduce(*, [b**((j*rapport(1,k)) quo n) for b in bList for k in UZn]) for j in UZn] ; -- verification en introduisant la liste B des Bj B : List(E) := [reduce(*, [b**rapport(j,i) for b in bList for i in UZn]) for j in UZn] ; [B(1)**j - b * d**n for b in B for d in delta for j in UZn] L := SimpleAlgebraicExtension(E, UP('C1, E), C1**n - B(1)) ; C1 : L := generator()$L ; -- retracter de L sur Zt : Zt < K < E < L retraction(z : L) : Zt == zE : E := retract(z) zK : K := retract(zE) zt : Zt := retract(zK) return zt )set message time on C : List(L) := [C1**j / d for j in UZn for d in delta] ; -- en principe [c**n for c in C] = B r : List(L) := [reduce(+, [c * xi**(k*j) for j in UZn for c in C]) for k in 0 .. n-1] ; LX := UP('X, L) ; X : LX := monomial(1, 1) ; g : LX := reduce(*, [X - rho for rho in r]) ; f : UP('X, Zt) := map(retraction, g) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}