\documentclass{article}
\usepackage{axiom}
\begin{document}
\title{\$SPAD/src/input r21bugs.input}
\author{Mike Dewar}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{License}
<<license>>=
--Copyright The Numerical Algorithms Group Limited 1996.
@
<<*>>=
<<license>>


-- This file tests bugs fixed since release 2.1.
-- Mike Dewar 19-11-96

)clear completely
-- This bug, spotted by Claude Quitte, meant that we generated incorrect
-- expressions for Chebyshev polynomials of the second kind, so that they
-- did not satisfy the recurrence relation:
--  U_n(x) - x U_{n-1}(x) = T_n(x)

)set expose add constructor PolynomialNumberTheoryFunctions
X : UP('x, Integer) := x
[chebyshevU(n) - X*chebyshevU(n-1) - chebyshevT(n) for n in 1 .. ]

)clear completely
Fp:=PF 2
poly:=createIrreduciblePoly(4)$FFPOLY(Fp)
Fq:=FFP(Fp, poly)    -- Field with 16 elements
R:=DMP([X,Y,Z],Fq)
Q:=FRAC R
F:=X**4+X*Z**3
G:=X**4+X**2*Y**2+Z**4
h:Q:=F/G

)clear completely

squareFree ((c^15*e^8+c^23*d^4)::POLY PF 2) 

)clear completely
FiniteFieldExtensionByPolynomial(FF(3,3),1+2*x**2+x**3)

)clear completely
Field has Ring

)clear completely
-- from bmt
y:=operator y
u:=operator u
eval(y x, y, c[1]*x,x)
eval(y x, y, D(u t,t),t)
eval(y x ,y, integral(u t,t),t)
eval(y x ,y, integral(u z,z=z0..t),t)
eval(y x+D(y x,x), y, u t+ D(u t,t),t)
eval(D(y x,x)+y(x),y,D(u x,x)+u(x),x)


)clear completely
-- from bmt
ps:=x::TS FRAC INT
D(ps,x) -- fails to find function
D(ps,[x]) -- works
D(ps,[y]) -- causes ccl to disappear (at least under windows)


)clear completely
-- from bmt
T1:=3
a | a^2+1
--gets an error while trying to display the type of the expression
--since it uses fortran code generation stuff which wants to use
-- the variable name T1 for some other purpose

)clear completely
-- from bmt
u1 := operator 'u1
u2 := operator 'u2
eq1 := D(u1(t),t,2) + 5*u1(t) = 2*u2(t)
eq2 := D(u2(t),t,2) + 2*u2(t) = 2*u1(t)
eq1/2
_rule(rhs %, lhs %)
%(lhs eq2)
eval(%,t=0)

)clear completely
-- from bmt
bug := [exp(sqrt(-5))]
complexForm(bug.1) -- works
map(complexForm,bug::List EXPR COMPLEX INT) -- works
map(complexForm,bug) -- fails


)clear completely
-- from bmt
f x == c[1]*exp(x)
f x -- works
g(x:EXPR(INT)):EXPR(INT) == c[1]*exp(x) 
g x -- fails
g(x:EXPR(INT)):EXPR(INT) == (c[1]::EXPR INT)*exp(x) 
g x -- fails

)clear completely
-- from bmt
a | a**8+a**4+a**3+a**2+(1::PF 2)
tt:Matrix SAEa:=[_
[0,0,0,1,1,1,0,1],_
[1,0,0,0,0,0,0,0],_
[0,1,0,0,0,0,0,0],_
[0,0,1,0,0,0,0,0],_
[0,0,0,1,0,0,0,0],_
[0,0,0,0,1,0,0,0],_
[0,0,0,0,0,1,0,0],_
[0,0,0,0,0,0,1,0]];
T:=transpose tt
T0:=T**91
T1:=T**95

)clear completely
-- from bmt
u1:=operator 'u1
u2:=operator 'u2
eq1 := D(u1(t),t,2) + 5*u1(t) = 2*u2(t)
eq2 := D(u2(t),t,2) + 2*u2(t) = 2*u1(t)
eq1/2
_rule(rhs %, lhs %)
%(lhs eq2)=%(rhs eq2)
rightZero %
-2*%
eval(lhs %,u1,exp(r*t),t)
%/exp(r*t)
solve(%,r)
[eval(exp(r*t),eq) for eq in %]
map(complexForm, %::List EXPR COMPLEX INT)
[real %(1), imag %(1), real %(3), imag %(3)]
gform:= u1(t)=reduce(+, [c[i]*%.i for i in 1..#%])
_rule(lhs %, rhs %)
%(lhs eq1)=rhs eq1
%/2
--part c
inits := [u1(0)=1, eval(D(u1 t,t),t=0)=0, u2(0)=2, eval(D(u2 t,t),t=0)=0]
eqq := eq1-5*u1(t)
eval(eqq,t=0)
eval(%,inits)
inits:=cons(%,inits)
D(eqq,t)
eval(%,t=0)


)clear completely
-- from bmt
u:=operator 'u
exp:=D(u t,t)
k:=kernels(exp).1
l:=argument %
difop:=operator k
l2:=[l.1+l.2,l.2,l.3]
bug:=evaluate(difop,l2)
kernels(bug).1
argument %
eval(bug,t=0)

)clear completely
R := Polynomial(PrimeField(3)) ; 
A := UP('X, R) 
X : A := monomial(1, 1) ;
f : A := a*X^3 + b*X^2 + c*X + d
discriminant(f)
s := differentiate f
resultant(f,s)
exquo(%,leadingCoefficient(f))

@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}