\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input r21bugs.input} \author{Mike Dewar} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1996. @ <<*>>= <<license>> -- This file tests bugs fixed since release 2.1. -- Mike Dewar 19-11-96 )clear completely -- This bug, spotted by Claude Quitte, meant that we generated incorrect -- expressions for Chebyshev polynomials of the second kind, so that they -- did not satisfy the recurrence relation: -- U_n(x) - x U_{n-1}(x) = T_n(x) )set expose add constructor PolynomialNumberTheoryFunctions X : UP('x, Integer) := x [chebyshevU(n) - X*chebyshevU(n-1) - chebyshevT(n) for n in 1 .. ] )clear completely Fp:=PF 2 poly:=createIrreduciblePoly(4)$FFPOLY(Fp) Fq:=FFP(Fp, poly) -- Field with 16 elements R:=DMP([X,Y,Z],Fq) Q:=FRAC R F:=X**4+X*Z**3 G:=X**4+X**2*Y**2+Z**4 h:Q:=F/G )clear completely squareFree ((c^15*e^8+c^23*d^4)::POLY PF 2) )clear completely FiniteFieldExtensionByPolynomial(FF(3,3),1+2*x**2+x**3) )clear completely Field has Ring )clear completely -- from bmt y:=operator y u:=operator u eval(y x, y, c[1]*x,x) eval(y x, y, D(u t,t),t) eval(y x ,y, integral(u t,t),t) eval(y x ,y, integral(u z,z=z0..t),t) eval(y x+D(y x,x), y, u t+ D(u t,t),t) eval(D(y x,x)+y(x),y,D(u x,x)+u(x),x) )clear completely -- from bmt ps:=x::TS FRAC INT D(ps,x) -- fails to find function D(ps,[x]) -- works D(ps,[y]) -- causes ccl to disappear (at least under windows) )clear completely -- from bmt T1:=3 a | a^2+1 --gets an error while trying to display the type of the expression --since it uses fortran code generation stuff which wants to use -- the variable name T1 for some other purpose )clear completely -- from bmt u1 := operator 'u1 u2 := operator 'u2 eq1 := D(u1(t),t,2) + 5*u1(t) = 2*u2(t) eq2 := D(u2(t),t,2) + 2*u2(t) = 2*u1(t) eq1/2 _rule(rhs %, lhs %) %(lhs eq2) eval(%,t=0) )clear completely -- from bmt bug := [exp(sqrt(-5))] complexForm(bug.1) -- works map(complexForm,bug::List EXPR COMPLEX INT) -- works map(complexForm,bug) -- fails )clear completely -- from bmt f x == c[1]*exp(x) f x -- works g(x:EXPR(INT)):EXPR(INT) == c[1]*exp(x) g x -- fails g(x:EXPR(INT)):EXPR(INT) == (c[1]::EXPR INT)*exp(x) g x -- fails )clear completely -- from bmt a | a**8+a**4+a**3+a**2+(1::PF 2) tt:Matrix SAEa:=[_ [0,0,0,1,1,1,0,1],_ [1,0,0,0,0,0,0,0],_ [0,1,0,0,0,0,0,0],_ [0,0,1,0,0,0,0,0],_ [0,0,0,1,0,0,0,0],_ [0,0,0,0,1,0,0,0],_ [0,0,0,0,0,1,0,0],_ [0,0,0,0,0,0,1,0]]; T:=transpose tt T0:=T**91 T1:=T**95 )clear completely -- from bmt u1:=operator 'u1 u2:=operator 'u2 eq1 := D(u1(t),t,2) + 5*u1(t) = 2*u2(t) eq2 := D(u2(t),t,2) + 2*u2(t) = 2*u1(t) eq1/2 _rule(rhs %, lhs %) %(lhs eq2)=%(rhs eq2) rightZero % -2*% eval(lhs %,u1,exp(r*t),t) %/exp(r*t) solve(%,r) [eval(exp(r*t),eq) for eq in %] map(complexForm, %::List EXPR COMPLEX INT) [real %(1), imag %(1), real %(3), imag %(3)] gform:= u1(t)=reduce(+, [c[i]*%.i for i in 1..#%]) _rule(lhs %, rhs %) %(lhs eq1)=rhs eq1 %/2 --part c inits := [u1(0)=1, eval(D(u1 t,t),t=0)=0, u2(0)=2, eval(D(u2 t,t),t=0)=0] eqq := eq1-5*u1(t) eval(eqq,t=0) eval(%,inits) inits:=cons(%,inits) D(eqq,t) eval(%,t=0) )clear completely -- from bmt u:=operator 'u exp:=D(u t,t) k:=kernels(exp).1 l:=argument % difop:=operator k l2:=[l.1+l.2,l.2,l.3] bug:=evaluate(difop,l2) kernels(bug).1 argument % eval(bug,t=0) )clear completely R := Polynomial(PrimeField(3)) ; A := UP('X, R) X : A := monomial(1, 1) ; f : A := a*X^3 + b*X^2 + c*X + d discriminant(f) s := differentiate f resultant(f,s) exquo(%,leadingCoefficient(f)) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}