\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input opalg.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991, 1995. @ <<*>>= <<license>> )cl all -- This is the recursive definition of the Legendre polynomials L n == n = 0 => 1 n = 1 => x (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2) L 5 -- Create the differential operator d/dx on Q[x] dx := operator("D")::OP(POLY FRAC INT) -- and attach the map d/dx to it: evaluate(dx, p +-> differentiate(p, 'x))$OP(POLY FRAC INT) -- This is the differential equation satisfied by the nth Legendre poly: E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1) E 5 [L i for i in 1..10] [E i for i in 1..10] [(E i)(L i) for i in 1..10] @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}