\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input octonion.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{License} <<license>>= --Copyright The Numerical Algorithms Group Limited 1991. @ <<*>>= <<license>> )clear all -- the octonions build a non-associative algebra: oci1 := octon(1,2,3,4,5,6,7,8) oci2 := octon(7,2,3,-4,5,6,-7,0) oci3 := octon(-7,-12,3,-10,5,6,9,0) oci := oci1 * oci2 * oci3 (oci1 * oci2) * oci3 - oci1 * (oci2 * oci3) -- the following elements, together with 1, build a basis over the ground ring octon(1,0,0,0,0,0,0,0) i := octon(0,1,0,0,0,0,0,0) j := octon(0,0,1,0,0,0,0,0) octon(0,0,0,1,0,0,0,0) octon(0,0,0,0,1,0,0,0) octon(0,0,0,0,0,1,0,0) J := octon(0,0,0,0,0,0,1,0) octon(0,0,0,0,0,0,0,1) i*(j*J) (i*j)*J -- we can extract the coefficient w.r.t. a basis element: imagi oci imagE oci -- 1 and E build a basis with respect to the quaternions: -- but what are the commuting rules? qs := Quaternion Polynomial Integer os := Octonion Polynomial Integer -- a general quaternion: q : qs := quatern(q1,qi,qj,qk) E := octon(0,0,0,0,1,0,0,0)$os q * E E * q q * 1$os 1$os * q -- two general octonions: o : os := octon(o1,oi,oj,ok,oE,oI,oJ,oK) p : os := octon(p1,pi,pj,pk,pE,pI,pJ,pK) -- the norm of an octonion is defined as the sum of the squares of the -- coefficients: norm o -- and the norm is multiplicative: norm(o*p)-norm(p*o) @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}